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Abstract

We document initial MP structures and their performance on the currently defined revised tuning
objectives. At this stage, performance is only shown for the MPs tuned to the objectives for the
reference set of OMs. We employ the use of: long-line CPUE, the gene tagging data, as well as the
close-kin mark-recapture data (both empirically and in a model-based setting). The four candidate
tuning objectives (median TRO of 25%, 30%, 35% and 40% of the unfished state by 2035) were
obtained for all but one CMP and showed clear differences in likely performance across objectives
and across CMPs. MPs which employed target-limit style rules performed better than those which
used only trend information. MPs that used CKMR data (empirically or model-based) resulted in
generally higher average TACs and lower variability and incosistency for the 30% and 35% tuning
objectives. For the 25% tuning objective all MPs act to rapidly increase the TAC and cause TRO
decreases post-2035; for the 40% objective all MPs act to rapidly decrcease the TAC causing a a
clear disparity between the TAC and the effective replacement yield at the target objective by 2035.

1 Background

The changes required to the SBT OM projection code (sbtproj.tpl) were outlined in [1], which built
upon ideas for data generation and MP index construction first explored in [2]. In this paper we first detail
the types of data and forms of MP we explored, then their performance when tuned to the four tuning
objectives using the reference set of OMs.

2 Data and forms of the CMPs

We use three data sources, thought not all three at the same time, in the various CMPs:
1. Japanese long-line CPUE
2. The gene tagging (GT) data (matches and number of comparisons)

3. The close-kin mark-recapture (CKMR) data (matches and number of comparisons)

2.1 MPs using the CPUE & GT data

The usual trend term has been employed previously [3]:

TAC, 41 = TAC, (1 + kA,)

where A is the log-linear trend in the index under consideration could be modified as follows:

AP =14+ k(1 +v)N, if Ay < =),
AP =1 if Ay € (=AN),
AP =1+ k(1 —v)A, if Ay >\,

where:
e [ is the usual "gain” parameter

e v € (—1,1)is an asymmetry parameter that can act more/less strongly on positive/negative trends
depending on its relative sign

e )\ is a threshold” trend level: given the time-frame employed to estimate the trend, 7 years say,
and the CV in the index it would be the lower bound at which the estimates of trend will basically
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be driven by the noise. The crucial point being we can construct some simple conditions to set this
value given 7 and the index CV and auto-correlation

As a simple motivating example for how to estimate X consider 7 = 7 years and a CV of 0.2 and au-
tocorrelation of around 0.25 (basically, the settings/values in the Bali Procedure and current OM). If our
criterion of performance is the probability that we can estimate the correct sign in the trend (i.e. positive
or negative) then to reduce the proportion of false negatives to 0.05 we would choose A =0.07i.e. don't
bother with anything less than a trend of 6% as it has a good chance of being spurious and noise driven.
Obviously, a critical false positive rate of 0.05 is fairly stringent - the main point being we can define a crit-
ical value of this false positive rate and, given the settings of the OM and the MP, calculate a subsequent
value of \. Say we wanted to get the right trend 3 times out of 4: the minimum “retained” trend estimate
would then be A = 0.03.

We already included a simple GT-driven log-linear trend style MP in the test GTinMP example uploaded
it github, so we explore some other options here. The main advantage that the GT data have over the
aerial survey is that they are absolute, or should be if everything we think we know about spatial stock
structure and recruitment dynamics is about right. The lowest estimated cohorts were (age 0 fish from
2000 to 2002), and by age 2 fish the mean abundance was around 700,000 animals. These recruits very
likely caused a rapid decrease in the CPUE in the mid 2000s as they entered the long-line fishery, and
left a clear hole in the length frequency data as well as signals in both the tagging and SAPUE data. They
represent reasonably well-estimated levels of age 2 fish below which we know bad things can happen,
suggesting themselves as a potentially useful limit level - now we have in principle estimates of absolute
age 2 fish from the GT program.

If we are to use the absolute nature of the GT data then the general principles would be something like:
e Below the limit level the HCR should act strongly to reduce the TAC

e Above the limit level and up to some pre-specified upper level the GT part of the HCR maintains the
TAC where it is

e If recent mean recruitment has been suitably elevated (i.e. above a pre-specified level) then the
HCR should act to increase the TAC

To calculate the recent mean age 2 abundance from the GT data consider a weighted moving average
approach:

y—2
Nyo = g wiN; 2
i=y—1-—7

where w; is a weighting proportional to the number of matches used to produce the GT estimate Ni’Q
(basically inverse variance weighting). The 2 year delay between having the estimate and what year it
actually refers to is factored into the calculation. The multiplier for the GT part of the HCR would then be:

Agt =1 if Ny72 S (NIOW)Nhigh)7

Nys\’ _
Agt = <th’f’h> if Ny’Q > Nhigh
ig

with Njoy the limit level and NVyie1, the upper level at where TAC inrceases are permitted. The exponents
« and [ are to allow for differential responses depending on the situation: we might expect a > 1 as
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we would want to act strongly on poor recruitment levels; alternatively we might have 8 < 1 so that
TAC inreases based on increased recruitment are more modest, given increased recruitment does not
guarantee the TRO will increase (especically if we increase the F's they experience as they mature).

2.2 MPs using the CKMR data

From the CKMR data we can derive an empirical index (be it POP, HSP or combined), I;k [2], or an actual
estimate of the TRO and mean adult Z from the model-based framework. The empirical CKMR indices
can clearly capture trends in the true TRO: as it goes up/down, then the number of kin matches (condi-
tional on the sampling regime) should generally go down/up. What complicates this simple interpretation
of the trend in the overall number of matches (and what it is telling us) are the following:

1. Changes in adult “recruitment”: increases or decreases in the number of sub-adults who sur-
vive to become reproductively active due to variations in actual age-0 recruitment and changes in
juvenile and sub-adult mortality

2. Changes in adult mortality changes in either the TAC or trends in the adult recruitment will clearly
alter the harvest rates and, even for an assumed time-invariant M, by extension total mortal-
ity/survival

The short-to-medium term effect of these changes can be seen in the empirical indices, driven by the
large 2013 recruitment beginning to move its way into and through the adult population. Strong changes
in age structure and mortality have to have a strong effect on the POP and HSP probabilities . If we could
somehow use a model to tease these effects out of the data, there is the potential to estimate trends in
TRO that correlate far better with the true TRO than the empirical indices can. We could also estimate
additional variables of use (like adult recruitment and total mortality).

This is similar to the approach taken when developing the population model behind the Bali Procedure.
The specifics would be quite different given the radical difference in the input data (CPUE and aerial
survey vs. POP and HSP data), but the idea is the same: reduce the variability and bias in the indices
by accounting for the underlying population dynamic drivers of the fluctuations causing those biases. We
explored a simple age-structured population model:

Ny.apin = Rexp (ey - 0'?3/2) ,
ey ~ N(0, o%),
Ny+1,a+1 = INy,q €XP (_Zy,a) ac (amina amax)y
Ny“l’l,amax = Nyyamaxfl eXp (_Zyyamaxfl) + Nyyamax eXp (_Zyyamax) )
Zya = Zy a < 25,

a— 25
Zy7a - Zy + m (Zamax - Zy) ac [26’ amaXL
Zmaxexy + Zmin
Zy - )
14 exv

Xy+1 = Xy T <ya
Cy ~ N(07 U)QC)7

TROy = Nyafa

The main ideas behind the population model are:

e |t is only for adults, with a minimum age (amin) defining where fish being to be considered possible
reproductively active adults
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Parameter  Value
Gmin 6
Amax 30

OR 0.2
Oy 0.1
Zmin 0.05
Zmax 0.4
Amax 0.5
HXinit -1.38
O Xinit 0.2
Ghsp 0.9

Table 2.1: Settings for CKMR MP population model

e Recruitment to the adult stock is assumed to vary randomly around a mean value

e Total mortality, Z, ,, has a well-defined age and time structure: between a,i, and 25 it is fixed by
age, but has a random walk time component

e Between 25 and a5« total mortality rises linearly to a pre-specified maximum Z,,

max

e The time-varying Z, variable is constrained to be between Z,i, and Zax

e Equilibrium conditions are assumed for the first year age-structure

e A plus group is used for ages above the final true age class, amax — 1

e The total reproductive output (TRO) is defined using a time-invariant ogive, ¢,
The estimate parameters of this model are:

1. The mean adult recruitment, R

2. The adult recruitment deviations, ¢,

3. The initial value, Xinit, that "starts” the random walk for Z;, (with an associated normal prior mean
and SD)

4. The random walk deviations ¢,

This is basically the same number of parameters estimated in the Bali Procedure population model [3],
so we are not talking about a large number of model parameters, and many of them are going to be
constrained deviation parameters. The likelihood model for the POP and HSP data are basically the
same as those used in the SBT OM, but where M, and the harvest rates are replaced by Z, , to estimate
cumulative survival in the HSP likelihood.

Using the same fixed TAC (17,647t) projection we used to explore the utility of the empirical CKMR indices
we undertook a full simualtion evaluation of the simplified CKMR estimation model with the settings as
laid out in Table 2.1.

Figure 2.1 outlined the estimation performance of the CKMR MP population model, given the settings in
Table 2.1 and assumed a future fixed TAC of 17,647t. Clearly, while under-estimating the much later TRO
and mean adult Z, it captures the true trends very well. The median correlation between the estimated
and true TRO and mean adult Z was 0.97 and 0.86, respectively.

The values for the fixed and prior parameters in the CKMR model are clearly informed by the current OM.
The value of the mimimum age, 6, is chosen given the youngest age of a detected parent in the POPs.
The maximum age is the maximum age assumed in the OM, and the total mortality at the maximum age
is basically the estimated level (around 0.5). Average adult Z at the start of the CKMR data (around the
early 2000s) is somewhere around the 0.15 level and the prior mean and SD of xinit are chosen to reflect
this, albeit fairly weakly given the prior variance. The minimum value of Z for the ages less than 25 is fixed
at 0.05 which is the lowest level of My assumed in the OM and the maximum Z is assumed to be lower
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Figure 2.1: True (left) and estimated (right) TRO (top) and mean adult Z (bottom) for the CKMR MP
population model outlined in Table 2.1
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than the Z at the maximum age. The way that Z increases to the maximum level is also driven by the
OM: permitted to increase linearly from age 25 to the maximum age. The value of gy}, is also informed
heavily by the OM estimates at around 0.9. So the model rests heavily on things we think we now know
about some of these key variables given the inclusion of the historical CKMR data (which is valid in an MP
context), but does not assume to know things it simply could not about future parameters and data (which
is arguably the most important part of using models in an MP context).

The main thing we do know about where we want the future TRO to go, relative to the present, is that we
want it to go up. So, given a reference level of the empirical index centered around the present, I, the
target level of the TRO we wish to rebuild the stock to will be some multiple of this, v > 1. This formulation
lends itself to the construction of a target-type HCR element for the CKMR data:

Ik .

Azk _ (1 B ’UJCk) + wckﬁjd) if I;li4 < ’)/I(l — 5),

A% =1 if IS5, € (vI(1—6),vI(1-0))
Ik .

AZk _ (1 . wck) + wck#jé) if I;li4 > ’}/I(l + (5),

Summarising the key control parameters:

1. The term w € (0, 1) is a weighting term: closer to zero and there is a lot of "inertia” in this part
of the HCR and TACs will move little, regardless of trends; closer to 1 and the HCR moves to being
almost a pure target style HCR driven only by the distance of the current CK index relative to the
target, v1

2. Theterm ¢ € (0, 1) is a "buffer” term, so that the HCR is instructed to do nothing if the current index
above or below the target by a factor of (1 + §) or (1 — J), respectively

3. Theterm I is a suitably defined estimate of the "recent” index -best calculated for the period for
which we have actual CKMR data

4. The term -y is the index "inflation” value: the amount by which we want to increase the CKMR index
from the I level. For example, if we have a reasonably well correlated 1:1 relationship between the
CKMR index and TRO, then ~y would be the tuning target TRO depletion level divided by the current
TRO depletion level. In practice this terms seems well suited to being a tuning parameter, given an
array of possible future TRO tuning targets

With the model-based option we will also obtain a potentially usable estimate of mean adult Z, and
obviously using the trend in this data may also prove fruitful. Initial runs using the initial CKMR part of the
HCR in the model-based context actually showed strange (at first) but after consideration (given how well
the model tracks the trends) obvious behaviour. The model accurately estimates when the true TRO is
above or below the target level vf, and cuts the TAC even if the trend in TRO is going up. This causes it
to have to then increase the TAC rapidly once the TRO approaches the target level, and some oscillatory
behaviour can emerge.

A modification to the HCR for the model-based CKMR MP was required so that it was able to track the
trend in the TRO when below the target level (and reduce it if it is not going up fast enough). The minimum
expected (log-scale) rate of increase is actually fairly simple to define. Given a time-frame, 7', and the
inflation factor +, then A% = ~7~" — 1, and we chose the time-frame as 2007 to 2035.

The modified HCR was defined as follows:

6 | Initial MP performance



A =1k (X =A%) i I, <4T(1-6) and XS < 2K,
A% =1 if 1%, <~y[(1-6) and A > Xk
Ak = 1 if Ig<y € (YI(1—6),7I(1-0))

]Ck BCk
y—4 if I, >~I(1+0) and X*<0
) y—4 = Y 3

ACk: 1— ck_|_ ck _
Yy <( w™) +w e

ICk ﬁCk
y—4 if 1%, >~I(1+06) and X*<>0
) y—4 =7 y =

ACk: 1+kck)\ck 1— ck + ck _
Y <( y L)t YI(1+6

In terms of naming conventions of MPs (descriptive ones at least) for CPUE we have:
1. C1: trend-type CPUE HCR
2. C2: target-type CPUE HCR
For GT data we have:
1. GT1: limit-type GT HCR
2. GT2: trend-type GT HCR
For CKMR data we have:
1. CK1a: empircal POP-based target HCR
2. CK1b: empircal HSP-based target HCR
3. CK1c: empircal POP+HSP combined target HCR
4. CK2: model-based (inc. POP and HSP) based
5. CK2z: as with CK2 but including mean adult Z trend

So an MP file called C1GT2CK1la.tpl would include CPUE (trend), gene-tagging (limit) and a CKMR
empirical POP index (target) HCR. For this initial phase of the work we explored seven CMPs:

1. C1GT1 (CPUE trend, GT limit): rh1

2. C1GT2 (CPUE trend, GT trend): rh2

3. C2GT2 (CPUE target, GT limit): rh3

4. C2GT2 (CPUE target, GT trend): rh4

5. C1GTCK1a (CPUE trend, GT trend, CKMR POP index): rh5

6. C1GTCK1c (CPUE trend, GT trend, CKMR POP+HSP index): rh7
7. C1GTCK2 (CPUE trend, GT trend, CKMR TRO estimate): rh8

with their short names used in graphical and other summaries in bold.
2.3 Overall formulation for TAC change

For CMPs using both CPUE and gene tagging data the TAC change would be as follows:

TACy41 =TACy x AP x Agt,
and for CMPs using the CPUE, gene tagging and the CKMR data it would be defined by
TACy41 = TAC, x AP x AB' x AS™,
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It is worth noting the slightly different manner in which “inertia” in the TAC is included in this formulation.
It is actually embedded within the changes (the A’s), not within the main TAC equation. This was done
to make it possible to effectively introduce inertia into the CPUE and CKMR parts of the HCR but actively
exclude it from the GT part of the HCR (so it was not impeded in reducing the TAC for low recruitments).

3 MP performance on the reference set

Each of the CMPs was tuned to the four tuning objectives, with a tolerance of 1% (i.e. the MP parameters
were altered until the probability of meeting the objective was 0.5+ 0.005). In terms of summary statistics
we use the following initial set relating to TRO:

e P(TRO2935 > 0.2T ROy): the previous MP tuning objective

e P (T RO2935 > T'RO9017): probability that the TRO in the tuning year is greater than the current
level

e P(TRO240 > T RO935): probability that the TRO five years after the tuning year is above that
in the tuning year, to catch MPs which increase the TAC too high/fast when attaining the tuning
objective and cause a future "undershoot”

e Log-linear trend in TRO from 2021 to 2035: to see if there are trajectories which actually on average
go down from when the first TAC change occurs to when the tuning year is reached

and the following set for TACs:
e Mean TAC (across years) from 2021 to 2035
e AAV (from 2021 to 2035)
e Maximum TAC decrease (from 2021 to 2035)

e P(TAC,,3 < TAC,.2) if TAC, 5 > TAC, 1 and TAC, 1 > T AC,, for the r*® TAC decision
(default is currently » = 1)

e Mean (averaged over years and from 2021 to 2035) of the lower 10%ile in the TAC

The one perhaps unfamiliar tweak to these is for the TAC up/down statistic. The expected probability that
this happens is merely the number of times the TAC goes up twice and then goes down, divided by the
number of times it went up twice. For some tuning objectives and MPs, the TAC going up twice might be
a very common occurrence, but where the TAC going down again is not quite as common. For others,
the TAC going up twice might be very rare, but it coming down again is comparably quite common. For
the first case we would have a low and accurate estimate of the up/down statistic; for the second case
we would have a very high but very uncertain estimate that doesn’t really tell is much at all. If we simply
plot the expected probability of going up then down, without some measure of the uncertainty thereof, we
are likely to make misguided inferences about MP performance on this statistic. To address this we used
a simple Bayesian approach to plotting the likely distribution of this statistic, not just its expectation. For
a given MP run, if ny is the number of runs where the TAC goes up twice, and ns is the number of runs
where it subsequently goes down again, assuming an uninformative prior for the probability this happens,
p'¥, then the posterior distribution would be a beta distribution: p™ ~ B(0.5 + n2,0.5 4+ n1). We draw a
sample from this distribution when graphically displaying this statistic.

Figure 3.1 shows the performance of the 7 CMPs, for each of the 4 tuning objectives, for the TRO statistics
relating to probabilities. Figure 3.2 shows the log-linear TRO growth summary. Figure 3.3 shows the CMP
performance for the TAC summary relating to actual catch amount (mean, maximum decrease, and lower
10%ile). Figure 3.4 shows the AAV and up/down catch probability statistics.
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Figure 3.1: TRO probability summary for each of the CMPs and for each tuning objective.
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Figure 3.2: TRO log-linear growth summary for each of the CMPs and for each tuning objective.
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3.1 General performance across tuning objectives

At the extremes of the tuning objectives (25% and 40%) all MPs basically have to act to either rapidly
increase the TAC (25% objective), or rapidly decrease the TAC (40% objective). This is not surprising
given that the constant TAC levels for these two cases are 23,850t (25%) and 11,803t (40%) - both of
which are basically 2 maximum TAC changes (for 3,000t max. change) away from the last fixed TAC of
17,6471. In the 25% case all the MPs result in catch levels that causes the TRO in 2040 to have a 65-75%
chance of being below the 2035 level. For the 40% objective the rapid and sustained reductions in TAC
required result in TRO levels in 2040 that are greater than those in the target year (2035) almost with
probability 1, and TAC levels that are on average around 30—-35% of MSY levels, even with a TRO in 2040
that is well above the MSY level. So, for the 25% objective all MPs increase the catch above the level at
which we would expect the tuning objective to be maintained (it goes down in the future); there is also a
significant chance of stock trajectories that go down on average over the rebuilding period. For the 40%
objective all MPs rapidly decrease TACs, where the TRO continues rising rapidly after the target year, and
there is a large distance between the average TAC and MSY, even with a TRO level significantly above
the level assumed to produce MSY. Henceforth, we only outline the more specific performance of the MPs
for the 30% and 35% tuning objectives, given there is more apparent behavioural contrast for these two
cases, relative to the extrema.

3.2 MP performance on the TRO statistics for 30% and 35% tuning targets

All the MPs clearly exceed the original tuning objective for the Bali Procedure, so there are no issues
there. For the 30% objective, the TRO in 2040 is greater than that in the tuning year (2035) with a
probability of around 50% or above for all MPs - though it is basically at 50% for rh5 and rh7 (the CKMR
empirical MPs). For the 35% objective these probabilities are all at 75% or more - all MPs have a better
than average chance of further increasing the TRO post tuning year. For the 30% tuning objective there
is a small chance of trajectories that go down on average between 2021 and 2035 with no trend across
MPs; for the 35% objective this probability is very low and basically the same across MPs. On average,
the CKMR driven MPs seem to result in a more stable TRO trajectory post tuning year (but also with a
small chance of it coming down again by 2045), but other than this there is little to clearly separate the
MPs looking at TRO summary statistics alone.

3.3 MP performance on the TAC statistics for 30% and 35% tuning targets

Contrasting the MPs with trend vs. target forms for CPUE first: the trend driven MPs (rh1, rh2) show
lower variability in both mean TAC and AAV relative to the target-driven ones (rh3, rh4). Conversely they
have a higher propensity to increase the TAC twice and then decrease it. For the 30% tuning objective
the trend-based MPs show lower maximum decreases, relative to their target-based counterparts, but
this behaviour reverses for the 35% objective. The MPs including CKMR (rh5, rh6, and rh7) tend to have
higher mean TACs (relative to CPUE/GT only MPs), with a significantly and consistently lower chance of
decreasing the TAC after 2 increases. For the empirical CKMR MPs (rh5, rh7) the AAV is comparable to
the CPUE/GT MPs for the 30% objective, but lower for the 35% objective. Across all tuning objectives the
CKMR including MPs have clearly lower maximum TAC decrease statistics, relative to CPUE/GT MPs.
The model-based CKMR MP (rh8) consistently has both the lowest AAV and chance of a TAC decrease
after two increases, with better than average levels of the lower 10%.ile TAC. Mean TAC levels, while more
variable for target CPUE-drive MPs and empirical CKMR MPs, relative to the CPUE trend or model-based
CKMR MP, were very similar in terms of medians across tuning objectives.

4 Overall summary of initial MP performance

Figures 3.5 and 3.6 show the TAC and TRO worm plot summaries for MPs rh1, rh3, rh7, and rh8 for
the 30% objective to outline the general differences between MPs with different HCRs. The CPUE trend,
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Figure 3.5: Worm and quantile summary for TAC and MPs rh1 (top right), rh3 (top right), rh7 (bottom left),
and rh8 (bottom right).
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Figure 3.6: Worm and quantile summary for TRO and MPs rh1 (top right), rh3 (top right), rh7 (bottom
left), and rh8 (bottom right)..

12 | Initial MP performance



GT limit MP (rh1) shows low TAC variability, but more prominet up/down TAC dynamics (given the 2013
recruitment-driven trend in future CPUE) with TRO still increasing post-tuning objective year. The CPUE
target, GT limit MP (rh3) shows more TAC variability (both mean and AAV) than rh1, but higher TACs
later in time and a more stabilising TRO trend post tuning year. The empirical CPUE trend/CKMR tar-
get/GT limit MP rh7 shows higher average catches, little up/down TAC behaviour but with TAC still in-
creasing post-tuning year and the TRO just beginning to come down again by 2045. The model-based
CKMR/CPUE/GT MP rh8 shows a gradual increase in mean TAC early with later slight faster increases.
It has the best up/down TAC and AAV performance across all MPs as well as the lowest level of maximum
TAC decreases. After the tuning year the TRO begins to stabilise at the target level.

These initial MP explorations have yielded some informative inital results:

e The 25% and 40% tuning objectives (by 2035 with a 3,000t max change in TAC) show the least
contrast across MPs as they all have to either rapidly increase (25%) or decrease (40%) the TAC

e The 30% and 35% tuning objectives allow for more behavioural contrast across the CMPs

e Both trend and target features explored for CPUE: the former show low TAC variability but higher
up/down TAC behaviour; the latter show more overall TAC varability but comparable up/down be-
haviour - overall they seem a bit overreactive but this can be fixed

e The use of the GT data in the limit form (GT1) versus the trend form (GT2) - even at this stage -
looks more promising

e The use of CKMR data is clearly potentially very useful. In the empirical form the tuning to the
30% objective looks a tough aggressive (in terms of TAC increases later in time) but this can be
tempered. It is the model-based use of CKMR that seems to show very promising results, with the
best AAV stats, the lowest maximum TAC decreases, and the least propensity for decreasing TAC
after two increases, as well as mean TAC levels at or above the other CMPs.

For the 30% and 35% objectives, it is clear that when tuning to the reference set (and for the 3-year TAC
maximum 3,000t change settings) that a wide array of potential CMPs can be tuned to the objectives,
and that they can and do have differing performance characteristics. Choices around how best to use
the CPUE (trend, target, less reactive) and the GT data will be best explored via the low recruitment and
CPUE-related robustness trials. The CKMR data clearly show promise also in both their empirical and
model-based forms.
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