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ABSTRACT  

In this study we standardized southern bluefin tuna, Thunnus maccoyii (SBT) CPUE from Korean tuna 

longline fisheries (1996-2018) using Generalized Linear Models (GLM) with operational (set by set) data. 

The data used for the GLMs were catch (number), effort (number of hooks), number of hooks between 

floats (HBF), fishing location (5° cell), and vessel identifier by year, quarter, and area. We explored CPUE 

by area and identified two separate areas in which Korean vessels have targeted SBT. SBT CPUE was 

standardized for each of these areas. We applied two alternative approaches, data selection and cluster 

analysis, to address concerns about target change through time which can affect CPUE indices. Explanatory 

variables for the GLM analyses were year, month, vessel identifier, 5° cell, and number of hooks. GLM 

results for each area suggested that location, year, targeting, and month effects were the principal factors 

affecting the nominal CPUE. The standardized CPUEs for both areas decreased until the mid-2000s and 

have shown an increasing trend since that time.  

INTRODUCTION  
Developing indices of abundance using catch per unit effort data requires decisions based on 

understanding of both the fishery and the population dynamics of the species. This is particularly the case 

in a multi-species fishery, in which targeting behaviours change seasonally, spatially, and from year to year. 

Such analyses require careful data exploration, and methods to differentiate fishing practices.  

Southern bluefin tuna Thunnus maccoyii (SBT) are the target of a high value international fishery, managed 

by the Commission for the Conservation of Southern Bluefin Tuna (CCSBT). The stock has been assessed as 

highly depleted, but since a low point in 2005 has shown signs of recovery (CCSBT 2017).  

Korean tuna longline fisheries began targeting southern bluefin tuna in the CCSBT convention area in 1991 

(Kim et al. 2015). SBT were reported as bycatch before this time, starting in 1972. Catch was initially low 

but increased to 1,320 mt in 1996, peaked at 1,796 mt in 1998, and thereafter decreased to below 200 mt 

in the mid-2000s. In 2008, the catch increased again to 1,134 mt and thereafter fluctuated in a range of 

705-1,268 mt due to the national catch limit. The catch in 2019 was 1,238 mt (Figure 1).  
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In developing the index, we compare two alternative methods for differentiating targeting practices in the 

Korean distant water longline data. First, we explore the operational set-by-set data and develop data-

based indicators of effort targeting SBT, using the number of hooks between floats (HBF), and the month. 

Secondly, we use cluster analysis to group the effort into fishing strategies based on the species 

composition of the catch.  

We also apply two methods for estimating indices: the lognormal constant method and the delta lognormal 

method.  

DATA AND METHODS  
Set by set catch and effort data were compiled by the Korean National Institute of Fisheries Science (NIFS). 

Data were selected with the criterion that when a vessel reported the capture of at least one SBT in a 

month, all effort for the vessel-month was included.  

The Korean tuna longline vessels fishing for SBT have mainly operated in two locations to the south of 35oS 

either between 10°E-50°E (within statistical area 9) or between 90°E-120°E (within statistical area 8) (Figure 

2). Effort has focused on western areas (statistical area 9) from March to July/August and shifted to the 

east (statistical area 8) from July/August until December (Figure 3). In general, there has been more fishing 

effort in the west.  

The fields reported in the operational (set by set) data were catch (number), effort (number of hooks), 

floats (number of floats), vessel id, location to 1° cell of latitude and longitude, date, and catch in numbers 

of southern bluefin tuna (SBT), bigeye (BET), yellowfin (YFT), albacore (ALB), skipjack (SKJ), swordfish 

(SWO), black marlin (BLM), blue marlin (BUM), striped marlin (MLS), sailfish (SFA), sharks (SHA), and other 

species (OTH).  

Dates were converted to months and quarters. Moon phase was used to calculate the relative lunar 

illumination for each date, using the R package lunar (Lazaridis 2014). Spatial positions were classified into 

5° cells, and CCSBT statistical areas. The numbers of hooks between floats (HBF) were calculated by dividing 

hooks by floats and rounding to the nearest whole number.   

For CPUE standardization, data were cleaned by removing sets in which there were fewer than 1,000 hooks.  

Data were plotted to explore trends in total catch through time; the spatial and seasonal distributions of 

effort; and patterns in operational characteristics such as HBF and hooks per set. We examined patterns 

through time and among species in the nominal catch rates by year-quarter and statistical area, and 

compared them with patterns in the proportions of sets with no catch of each species. We plotted maps 

of the species composition through time, to identify possible changes in fishing behaviour or population 

composition.  

To further explore changes in the fishery and identify periods of change, we plotted the participation of 

vessels in the fleet, sorted first by the start date and then by the end date of participation in the fishery.  

Several approaches were used to explore changes in effort distribution and concentration through time. 

For each statistical area and for each year, we plotted the numbers of 5°x5° and 1°x1° cells fished and the 

average number of operations per fished cell. We defined two separate core SBT fishing areas: with 

statistical areas 9 in the west from March-October, and statistical area 8 in the east from July-December.  
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Indices of fishing effort concentration were also calculated, including the Gini coefficient (Gini 1912) and 

Gulland’s index of concentration (Gulland 1956). The Gini coefficient is best known as an indicator of wealth 

concentration, but can be used to measure aggregation of any quantity. We use it to estimate the spatial 

aggregation of the catch of each species, and effort, in each region. A higher Gini coefficient indicates that 

more of the catch (or effort) is being taken from fewer spatial cells. We estimated values separately for 

each year, where the values yi are catches or effort per 5° x 5° cell, ranked from lowest to highest, and 

including zeroes for unfished cells. Cell areas are assumed to be uniform.   

𝐺𝑖𝑛𝑖 =
2 ∑ 𝑖𝑦𝑖

𝑛
𝑖=1

𝑛 ∑ 𝑦𝑖
𝑛
𝑖=1

−
𝑛 + 1

𝑛
 

Gulland’s index of concentration measures the extent to which a fleet has concentrated its fishing effort in 

areas with higher than average catch rates (Harley 2009). The weighted version of the index is calculated 

as follows, where yi is the catch in the ith stratum, ei is the effort in the ith stratum, and N is the number of 

exploited strata.  
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This index varies from year to year depending on both the distribution of the effort, and the distribution of 

the catch rates. If effort is evenly distributed with respect to catch rate then the index will average 1, 

whereas it will be higher than 1 if effort is preferentially targeted to areas with higher than average catch 

rate (Hoyle 2014).  

Given the spatial and seasonal separation of fishing in these two areas, and potentially different size 

distributions, we standardized data separately for each area.  

Data from the period 1996-2019 were used in CPUE standardizations. Data prior to 1996 were not used in 

this study as they included insufficient reliable data from vessels targeting SBT.  

CPUE standardization methods generally followed the approaches used by Hoyle and Okamoto (2011) and 

Hoyle et al. (2015), with some modifications. Parts of the methods text below are the same as these 

articles. R code is also used from examples presented in Hoyle et al. (2014).  

Target change 
Target change can be a significant problem for CPUE standardization since it can bias CPUE trends. Analyses 

were carried out using two alternative approaches to address target change. The first approach removed 

effort considered unlikely to have targeted southern bluefin tuna. The second approach applied cluster 

analysis of species composition to separate effort into groups that may have used different targeting 

methods, and then included the categorical cluster variable in the standardization model.  

Data selection 
The data selection method firstly removed sets in which HBF was less than 9 or greater than 12. Secondly, 

data from each statistical area were selected for the periods in which most SBT were caught. Effort for area 

8 was included for the months July to December; and effort for area 9 was included for March to October.  
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Clustering 
In the clustering approach, we clustered all data for areas 8 and 9 using the approach applied by Hoyle et 

al. (2015). We removed all sets with no catch of any of the species, and then aggregated by vessel-month. 

Set-level data contains variability in species composition due to the randomness of chance encounters 

between fishing gear and schools of fish. If set-level data are clustered, this variability can lead to some 

misallocation of sets using different fishing strategies. Aggregating the data reduces variability and 

misallocation of sets. For these analyses we aggregated the data by vessel-month, assuming that individual 

vessels tend to follow a consistent fishing strategy through time. One trade-off with aggregation is that 

vessels may change their fishing strategy within a month, which will result in misallocation of sets. For the 

purposes of this paper we refer to aggregation by vessel-month as trip-level aggregation, although the time 

scale is (for distant water vessels) in most cases shorter than a fishing trip.  

We calculated proportional species composition by dividing the catch in numbers of each species by catch 

in numbers of all species in the vessel-month. Thus, the species composition values of each vessel-month 

summed to 1, ensuring that large catches and small catches were given equivalent weight. The data were 

transformed by centring and scaling, to reduce the dominance of species with higher average catches. 

Centring was performed by subtracting the column (species) mean from each column, and scaling was 

performed by dividing the centred columns by their standard deviations.  

We clustered the data using the hierarchical Ward hclust method, implemented with function hclust in R, 

option ‘Ward.D’, after generating a Euclidean dissimilarity structure with function dist. This approach 

differs from the standard Ward D method which can be implemented by either taking the square of the 

dissimilarity matrix or using method ‘ward.D2’ (Murtagh and Legendre 2014). However in practice the 

method gives similar patterns of clusters to other methods, more reliably than ‘ward.D2’ (Hoyle et al 2015).  

Data were also clustered using the kmeans method, which minimises the sum of squares from points to 

the cluster centres, using the algorithm of Hartigan and Wong (1979). It was implemented using function 

kmeans in the R stats package (R Core Team 2016).   

Selecting the number of groups 
We used several subjective approaches to select the appropriate number of clusters, which in most cases 

suggested similar numbers of groups. First, we considered the number of major targeting strategies likely 

to appear in the dataset, based on understanding and exploration of the data. Second, we applied hclust 

to transformed trip-level data and examined the hierarchical trees, subjectively estimating the number of 

distinct branches. Third, we ran kmeans analyses on untransformed trip-level data with number of groups 

k ranging from 2 to 25, and plotted the deviance against k. The optimal group number was the lowest value 

of k after which the rate of decline of deviance became slower and smoother. Finally, following Winker et 

al. (2014) we applied the nScree function from the R nFactors package (Raiche and Magis 2010), which uses 

various approaches (Scree test, Kaiser rule, parallel analysis, optimal coordinates, acceleration factor) to 

estimate the number of components to retain in an exploratory PCA.  
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Plotting and data selection 
We plotted the hclust clusters to explore the relationships between them and the species composition and 

other variables, such as HBF, number of hooks, year, and set location. Plots included boxplots of a) 

proportion of each species in the catch, by cluster; b) the distributions of variables by cluster; and c) maps 

of the spatial distribution of clusters, one map for each cluster.  

GLM analyses 
The operational data were standardized using generalized linear models in Microsoft R Open 3.3.2 (R Core 

Team 2016). Analyses were conducted separately for each of the two core areas, and for each of the two 

target change methods.  

Data were prepared by selecting operational data for vessels that had made at least 100 sets, for years in 

which there had been at least 100 sets, and for 5° cells in which there had been at least 200 sets. Categories 

with too few sets provide estimates with high uncertainty and low reliability, so this approach removes a 

few areas, vessels, and time periods that lack much usable information.  

Analyses were carried out using generalized linear models that assumed a lognormal distribution with an 

added constant. The following model, which we call the lognormal constant GLM, was used:  

ln(𝐶𝑃𝑈𝐸𝑠 + 𝑘) ~ 𝑦𝑒𝑎𝑟 + 𝑣𝑒𝑠𝑠𝑖𝑑 + 𝑙𝑎𝑡𝑙𝑜𝑛𝑔 + 𝜆(ℎ𝑜𝑜𝑘𝑠) + 𝑔(𝑚𝑜𝑛𝑡ℎ) + ℎ(𝑚𝑜𝑜𝑛) (1) 

The constant k, added to allow for modelling sets with zero catches of the species of interest, was 10% of 

the mean CPUE for all sets. The functions λ, g and h were cubic splines with 10, 4, and 4 degrees of freedom 

respectively. The number of hooks was included in the model to allow for possible hook saturation or other 

factors associated with hooks per set. The variable moon was the lunar illumination on the date of the set. 

The variables year, vessid, and latlong (5° latitude-longitude cell) were fitted as categorical variables.  

For the clustering-based approach, models also included a categorical variable for the cluster.  

Models did not include HBF because the ‘select’ method addresses HBF by only including values in the 

range 9-12. The ‘cluster’ method addresses targeting independently of HBF, and in any case only 0.8% of 

sets included HBF outside the 9-12 range. 

Delta lognormal analyses (Lo et al. 1992, Maunder and Punt 2004) used a binomial distribution for the 

probability w of catch rate being zero and a probability distribution f(y) , where y was log(catch/hooks set), 

for non-zero (positive) catch rates. The index estimated for each year-quarter was the product of the year 

effects for the two model components, (1 − 𝑤). 𝐸(𝑦|𝑦 ≠ 0).  

Pr(𝑌 = 𝑦) = {
𝑤, 𝑦 = 0

(1 − 𝑤)𝑓(𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

g(𝑤) = (𝐶𝑃𝑈𝐸 = 0) ~ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝜖, where g is the logistic function.  

f(𝑦) = 𝐶𝑃𝑈𝐸 ~ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝜖  
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Data in all models except the binomial model were ‘area-weighted’, with the weights of the sets adjusted 

so that the total weight per year-quarter in each 5° square would sum to 1. This method was based on the 

approach identified using simulation by Punsly (1987) and Campbell (2004), that for set j in area i and year-

quarter t, the weighting function that gave the least average bias was: 𝑤𝑖𝑗𝑡 =
𝑙𝑜𝑔(ℎ𝑖𝑗𝑡+1)

∑ log(ℎ𝑖𝑗𝑡+1)𝑛
𝑗=1

. Given the 

relatively low variation in number of hooks between sets in a stratum, we simplified this to 𝑤𝑖𝑗𝑡 =
ℎ𝑖𝑗𝑡

∑ ℎ𝑖𝑗𝑡
𝑛
𝑗=1

.  

Model fits were examined by plotting the residual densities and using Q-Q plots. 

The effects of covariates were examined in exploratory analyses by using the package influ (Bentley et al. 

2011) to show the influence of each covariate.  

Changes in catchability through time were investigated by fitting to the operational data both without and 

with a term for individual vessel. The two models were designated respectively the ‘base model’ and the 

‘vessel-effects model’. Abundance indices were calculated for each model, and normalized to average 1. 

The indices estimated for each year-quarter were compared by dividing the base model by the vessel 

effects model, plotting the time series of ratios, and fitting a log-linear regression. The slope of trend in the 

ratios represented the average annual rate of change in fishing power due to vessel turnover; i.e. the 

introduction of new vessels and retirement of old vessels. Gradients are shown on the figures, together 

with confidence intervals.  

Indices of abundance were obtained by applying the R function predict.glm to model objects. The datasets 

used for prediction included all year values, with all other variables fixed at either the median for 

continuous variables, or the mode for categorical variables. Binomial time effects were obtained by a) 

generating logit time effects from the glm, and b) adding a constant to these logit time effects so that the 

mean of the back-transformed proportions was equal to the proportion of positive sets across the whole 

dataset. The main aim with this approach is to obtain a CPUE that varies appropriately, since variability for 

a binomial is greater when the mean is at 0.5 than at 0.02 or 0.98, and the multiplicative effect of the 

variability is greater when the mean is lower. The outcomes were normalised and reported as relative CPUE 

with mean of 1.  

Uncertainty estimates were provided by applying the R function predict.glm with type = ”terms” and 

se.fit=TRUE, and taking the standard error of the year-quarter effect. For the delta lognormal models we 

used only the uncertainty in the positive component. Uncertainty estimates from standardizing commercial 

logbook data are in general biased low and often ignored by assessment scientists, since they assume 

independence and ignore autocorrelation associated with (for example) consecutive sets by the same 

vessels in the same areas. There may be a very large mismatch between the observation error in CPUE 

indices and the process error in the indices that is estimated in the assessment. This is particularly true for 

distant water longline CPUE, where large sample sizes generate small observation errors.  

 



 

  7  

RESULTS AND DISCUSSION 

Data exploration 
Almost all effort used between 9 and 12 hooks per float (HBF) (Figure 4), while the majority of HBF outside 

this range came from north of 35S, outside the main SBT targeting area. The number of hooks per set 

averaged less than 3000 in the period from 1990-95, but since that time has been relatively consistent, 

averaging a little over 3000. 

Mean catch rates by species in the southern statistical areas 7, 8, and 9 are highest for southern bluefin 

tuna until the mid-2000s. After this time in area 8 and 9 SBT catch rates decrease and other species, 

particularly albacore, increase. However, in the most recent years the SBT catch rates are again higher than 

other species (Figure 6). Similarly, the proportion of sets reported with zero SBT catches was low through 

most of the time series in the southern areas 8 and 9 (Figure 5), but area 9 shows an increase in the 

proportion of zeroes from 2004 to 2010.  

In the northern statistical areas 13 and 1, the tropical bigeye and yellowfin tunas dominate with the highest 

catch rates, along with albacore (Figure 6). Southern bluefin tuna catch rates are low throughout the time 

series, even though data were only selected for vessels reporting at least one SBT in the month. The mean 

catch rates across all vessels would be lower. The existence of zero SBT catch rates is likely due to vessels 

being included due to reporting SBT catch during the month in a different statistical area, though some 

may be due to effort with SBT catch being removed during the cleaning process. Most sets in these areas 

have no SBT catch (Figure 7), and there are few sets with zero catches of bigeye or yellowfin, while 

intermediate numbers of sets report no albacore catch.  

Statistical areas 14 and 2 in the Indian Ocean are at temperate latitudes between 20S and 35S. Highest 

catch rates are for yellowfin and (more recently) albacore in the western area 14, and bigeye and albacore 

in eastern area 2. Since the mid-2000s albacore catch rates have increased markedly and particularly in 

area 2, suggesting a trend towards targeting this species. Catch rates of SBT have been relatively low 

throughout the period, consistent with a high proportion of zero SBT sets, suggesting little or no deliberate 

targeting of SBT by the Korean longline fleet in these statistical areas.  

We mapped the species composition of catch (proportion of SBT in the catch of all species) south of 30S 

by 5-year period (Figure 8).  The proportion of SBT in the catch was high in all periods, increasing further 

south, but declined steadily in all areas after 2005. In the post-2010 period there is little SBT taken in 

statistical area 8 north of about 37S, whereas a high proportion of the catch in this area is albacore (Figure 

9).  

Only 39 Korean vessels have participated in the area 8 and 9 fishery since 1996 (Figure 10), with over half 

of the total reporting their first participation before 2000. New vessels have arrived slowly but regularly. 

Seven vessels stopped participating in 2009, and seven more have stopped since then, but seven others 

have joined the fishery in that time.  

The total number of major (5° x 5° x month) cells fished has varied from year to year (Figure 11) but declined 

steadily and considerably since the peak in 2008. Over the same period, effort has become more 

concentrated with more operations per cell. This increasing concentration is also apparent at the minor (1° 

x 1° x month) cell level (Figure 12). The distribution of effort within major cells was more stable until 
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recently, with similar numbers of minor cells per major cell on average, but in 2017-19 effort concentration 

increased to the highest level.  

Gini coefficients are widely used in many fields to measure the distribution of quantity – with uniform to 

very uneven distributions represented by low to high Gini coefficients. Estimates for regions 8 and 9 for 

SBT, bigeye and albacore tuna, and for effort, show similar patterns, with increasing concentration through 

time (Error! Reference source not found.). 

Gulland’s index of concentration indicates whether effort is concentrated in areas of high or low catch rate 

for a species, but estimates can be variable and uncertain where sample sizes are small. Plots for SBT in 

areas 8 and 9 suggest that effort is generally higher in areas with higher SBT catch rate, since most points 

are above 1 (Figure 14). The results for bigeye and albacore are considerably more variable, reflecting the 

lower catch rates.  

Target change  
The data selection approach aimed to identify effort targeted mostly at southern bluefin tuna, by selecting 

area 9 data from March-October and area 8 data from July-December (Figure 3). This approach appeared 

to give reasonable results, but was not entirely successful, as indicated by the high proportions of zero 

catches in area 9 between 2004 and 2010 (Figure 5).  

Applying Ward’s D hierarchical cluster analysis at the vessel-month identified strong separation among 2 

to 3 groups in statistical areas 8 and 9 (Figure 15). We chose to use three clusters in each area. We 

preferred to use more clusters where there was uncertainty because unresolved target change can cause 

bias in indices.  

In area 9, clusters 1, 2, and 3 were more strongly represented in the later, middle, and early parts of the 

time series respectively (Figure 16). Clusters 1 and 3 occur mostly in the period before August, while cluster 

2 extends into October. Cluster 1 also has slightly more hooks between floats. Mean number of hooks is 

higher in cluster 1 and lower in cluster 2. Cluster 2 dominates the northeast of area 9, while cluster 1 

dominates the southwest, and cluster 3 the southeast (Figure 17). The species composition of cluster 3 

comprises almost entirely southern bluefin tuna, with small amounts of albacore and bigeye tuna (Figure 

18). Cluster 2 has significant southern bluefin tuna along with albacore, and some bigeye and yellowfin 

tuna. Cluster 1 includes some southern bluefin tuna along with similar amounts of others (oth), and also 

some sharks and albacore tuna.  

In area 8, cluster 1 dominates the early part of the time series, with clusters 2 and 3 more apparent after 

2005 (Figure 16). Cluster 1 averages fewer hooks between floats, while the hooks per set are similar for 

all clusters. Clusters 1 and 2 occur mostly in the second half of the year, while cluster 3 is represented 

during March to June. Cluster 1 is well represented across most of the fished area, while cluster 2 occurs 

at middle latitudes from about 38-42S. Cluster 3 occurs almost entirely in the far north of the area (Figure 

17). Cluster 1 is dominated by southern bluefin tuna, with little reporting of other species (Figure 18). 

Cluster 2 reports similar amounts of southern bluefin tuna, sharks, and others (oth). Cluster 3 reports more 

albacore than southern bluefin tuna, with others (oth), yellowfin and bigeye tuna also reported.  

CPUE standardization 
The models were initially applied to data from the first target change method, using the data selection 

process. Table 1 shows the results of dropping each variable from the lognormal constant GLMs, indicating 
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that all explanatory variables were statistically significant, with the year, location, vessel, and month that 

are the largest factors affecting the model fit. It is common in CPUE standardizations for all variables to be 

statistically significant. However, lack of independence is to be expected in observational fisheries data 

and tends to result in overestimation of statistical significance.  

The lognormal constant indices were broadly similar for both approaches to addressing target change, and 

the delta lognormal indices are very similar for both targeting analysis methods (Figure 19). However, 

comparison of unstandardized CPUE series with standardized series from two models shows large 

differences in the most recent years, especially area 9, when the standardized CPUEs are much higher than 

the unstandardized CPUEs.  

The delta lognormal indices differ from the lognormal constant indices in several ways (Figure 20). First, 

they are lower in the period before 2005, markedly so for area 9. Second, for area 9 they are considerably 

higher than the lognormal constant indices in 2015.  

The influence plots (Figures 20-24) showed the patterns of the parameter estimates at the top of each 

plot, and the influence of each parameter on the year effect on the right side of each plot. Note that the 

influence scales (bottom right) differ among plots. The influences of all variables are summarised in Figure 

26, which represent the effects of all the influence plots shows how many factors affect the index trends. 

The variables have mostly similar effects in the ‘selected data’ and ‘clustered data’ analyses.  

Diagnostic frequency distributions and QQ-plots ( 

Figure 27) suggest that the data fitted the GLM adequately.   

Patterns in the indices (Figure 29) differ somewhat between east and west. Both sets of indices decreased 

until the mid-2000s, and subsequently increased, particularly in the last few years. Lack of data prevents 

the estimation for eastern area 8 in 2003-2007 and 2017-2019 (  
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Table 2). The ratios of analyses with and without vessel effects did not suggest significant trends in fishing 

power. 
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Table 1. Degrees of freedom, Deviance, and delta AIC results from lognormal (CPUE + k) GLMs for 

statistical areas 8 and 9 

 Stat area 9 Stat area 8  
Df Deviance ΔAIC Df Deviance ΔAIC 

<none>  148.2 0  36.4 0 

Year 23 179.3 3111 14 42.3 1285 

Latlong 18 159.7 1203 10 38.1 365 

ns(hooks, 10) 5 150.0 190 5 36.7 55 

Vessid 29 158.3 1037 21 37.4 182 

ns(month, df = 4) 3 156.0 845 3 37.6 266 

ns(moon, df = 4) 4 148.3 11 4 37.3 185 
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Table 2. Lognormal constant indices for statistical areas 9 and 8, for selected data (left) and clustered 

data (right)  

 Selected data Clustered 

Year Stat area 9 CV Stat area 8 CV Stat area 9 CV Stat area 8 CV 

1996 0.99 0.03 0.94 0.04 0.92 0.03 1.22 0.04 

1997 0.75 0.03 0.65 0.02 0.81 0.03 0.80 0.03 

1998 0.73 0.03 0.72 0.02 0.76 0.03 0.87 0.03 

1999 0.79 0.03 0.61 0.02 0.73 0.03 0.78 0.03 

2000 0.68 0.03 0.64 0.02 0.65 0.03 0.80 0.03 

2001 0.78 0.03 0.70 0.03 0.76 0.03 0.80 0.03 

2002 0.75 0.03 0.45 0.02 0.72 0.03 0.51 0.03 

2003 0.61 0.03 - - 0.63 0.03 - - 

2004 0.32 0.03 - - 0.33 0.03 - - 

2005 0.17 0.05 - - 0.19 0.05 - - 

2006 0.50 0.04 - - 0.53 0.04 - - 

2007 0.40 0.03 - - 0.42 0.03 - - 

2008 0.78 0.03 0.98 0.02 0.78 0.03 1.06 0.02 

2009 0.60 0.03 0.67 0.03 0.61 0.03 0.66 0.03 

2010 0.63 0.03 0.74 0.02 0.64 0.03 0.74 0.03 

2011 1.57 0.04 0.96 0.02 1.46 0.04 0.99 0.03 

2012 1.24 0.03 1.14 0.03 1.25 0.03 1.20 0.04 

2013 1.02 0.05 1.50 0.04 1.01 0.05 1.12 0.04 

2014 1.85 0.05 1.71 0.05 1.89 0.05 0.98 0.05 

2015 1.03 0.05 1.02 0.04 1.08 0.05 1.05 0.05 

2016 1.44 0.04 2.57 0.05 1.49 0.04 2.43 0.06 

2017 1.45 0.04 - - 1.50 0.04 - - 

2018 2.25 0.04 - - 2.22 0.04 - - 

2019 2.68 0.05 - - 2.61 0.05 - - 
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Table 3. Delta lognormal indices for statistical areas 9 and 8, for selected data (left) and clustered data 

(right) 
 

Selected data Clustered data 

Year Stat area 9 CV Stat area 8 CV Stat area 9 CV Stat area 8 CV 

1996 0.73 0.03 0.88 0.04 0.69 0.03 1.11 0.04 

1997 0.48 0.03 0.60 0.02 0.55 0.03 0.70 0.02 

1998 0.49 0.03 0.70 0.02 0.51 0.03 0.81 0.03 

1999 0.57 0.03 0.53 0.03 0.51 0.03 0.65 0.03 

2000 0.50 0.03 0.58 0.03 0.46 0.03 0.71 0.03 

2001 0.58 0.03 0.64 0.03 0.56 0.03 0.73 0.03 

2002 0.62 0.03 0.39 0.03 0.61 0.03 0.43 0.03 

2003 0.58 0.03 - - 0.59 0.03 - - 

2004 0.27 0.03 - - 0.28 0.03 - - 

2005 0.23 0.06 - - 0.25 0.06 - - 

2006 0.34 0.04 - - 0.37 0.04 - - 

2007 0.33 0.03 - - 0.34 0.03 - - 

2008 0.63 0.03 1.00 0.02 0.63 0.03 1.11 0.02 

2009 0.52 0.03 0.65 0.03 0.54 0.03 0.77 0.03 

2010 0.58 0.03 0.76 0.03 0.60 0.03 0.79 0.03 

2011 1.37 0.05 0.99 0.03 1.28 0.05 1.02 0.03 

2012 0.95 0.03 1.22 0.04 0.96 0.03 1.26 0.04 

2013 1.00 0.04 1.62 0.04 0.99 0.04 1.33 0.04 

2014 1.90 0.05 1.90 0.06 1.94 0.05 1.27 0.05 

2015 3.16 0.06 1.09 0.04 3.28 0.06 1.03 0.05 

2016 1.42 0.03 2.45 0.06 1.43 0.04 2.28 0.06 

2017 1.61 0.04 - - 1.63 0.05 - - 

2018 2.17 0.04 - - 2.11 0.04 - - 

2019 2.98 0.05 - - 2.87 0.05 - - 
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Figure 1. The annual Korean SBT catches in the CCSBT convention area, 1991 - 2019. 
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Figure 2. Map showing the core areas of Korean tuna longline vessels fishing for SBT, aggregated by 5-

year period. Red colour indicates higher fishing effort, n numbers of hooks.  
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Figure 3. Mean annual effort in thousands of hooks, by month and statistical area.  
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Figure 4. Frequency table of HBF for the main fishing ground with the lighter shade for statistical areas 

7-9, and the darker shade for other areas.  
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Figure 5. Proportions of sets with zero catches of SBT by year and statistical area, in the data used in 

the standardization models.  
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Figure 6. Mean catch per hundred hooks by year-qtr, species, and statistical area, plotted on a log 

scale, for yellowfin, bigeye, albacore, and southern bluefin tuna. Each CPUE has 1E-5 added so that 

zero catches appear on the log scale.  
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Figure 7. Proportion of zero catches per set by year-qtr, species, and statistical area, for yellowfin, 

bigeye, albacore, and southern bluefin tuna.  
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Figure 8. Proportion southern bluefin tuna (SBT) in the total reported catch in numbers by 1° cell, 

aggregated over 5 years within the period 1995-2018. Red colour indicates a higher proportion of SBT.  
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Figure 9. Proportion albacore (ALB) in the total reported catch in numbers by 1° cell, aggregated over 5 

years within the period 1998-2018. Red colour indicates a higher proportion of ALB.  
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Figure 10. Plots of participation by vessel and year. Each row represents a vessel, with the left plot 

sorted by the first year of participation, and the right plot sorted by the final year.   
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Figure 11. For fishing since 1996 in areas 2, 8, 9, and 14, the number of cells (5° latitude by 5° longitude 

by month) fished (above) and the number of longline operations per cell (below).   
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Figure 12. (Upper) Bars represent the number of major cells (5x5° by month) fished by CCSBT statistical 

area and year, see left y-axis. The line represents the mean annual operations per cell, see right y-axis. 

(Middle) As for upper plot, but with minor cells (1x1° by month) instead of major cells. (Lower) Relative 

distribution of fished major cells by the proportion of the cell fished, measured as the number of minor 

cells fished within each major cell (see left y-axis). The lowest (red) and highest (purple) bands represent 

major cells in which, respectively, 1 and 15 of the 25 minor cells were fished. The line represents the 

mean number of minor cells fished per major cell by year, see right y-axis.  
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Figure 13. Gini coefficients estimated annually for southern bluefin tuna, bigeye tuna, albacore tuna, and 

fishing effort in statistical areas 8 and 9. 
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Figure 14. Gulland’s indices of concentration estimated annually for southern bluefin tuna, bigeye tuna, 

and albacore tuna, in statistical areas 8 and 9.  
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Figure 15. Dendrograms for Ward hierarchical cluster analyses of statistical areas 9 (above) and 8 

(below), with the red lines indicating the separation into 3 clusters for each.  
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Figure 16. Beanplots for statistical areas 9 (above) and 8 (below), showing the number of sets versus 

covariate by cluster. The horizontal bars indicate the medians.  
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Figure 17. Maps of the proportion of each cluster per 1 degree square in total effort for statistical areas 

9 (above) and 8 (below). Higher proportions are shown in yellow. White space indicates no reported 

effort.  
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Figure 18. Beanplots for statistical areas 9 (above) and 8 (below), showing species composition by cluster. 

The horizontal bars indicate the medians. 
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Figure 19. Nominal and standardized CPUE indices based on lognormal GLMs with an added constant 

(above) and delta lognormal models (below), addressing target change using selected data (triangles) 

and cluster analysis (squares), for statistical areas 9 (left) and 8 (right).  
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Figure 19 Nominal, lognormal constant and delta lognormal standardized CPUE indices based on data 

selection (above) and clustered data (below), for statistical areas 9 (left) and 8 (right). 
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Figure 20. Influence plots for vessel effects for areas 9 (left) and 8 (right), addressing target change 

using clustering.  

 

 

Figure 21. Influence plots for spatial latlong effects for statistical areas 9 (left) and 8 (right) , addressing 

target change using clustering.  

 
  



 

  38  

 

Figure 22. Influence plots for the effects of numbers of hooks for statistical areas 9 (left) and 8 (right), 

addressing target change using clustering.  

 
  

 

Figure 23. Influence plots for month effects for statistical areas 9 (left) and 8 (right), addressing target 

change using clustering.  
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Figure 24. Influence plots for lunar illumination effects for statistical areas 9 (left) and 8 (right), 

addressing target change using clustering.  

 

 

Figure 25. Influence plots for cluster effects for statistical areas 9 (left) and 8 (right), addressing target 

change using clustering. 
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 Figure 26. Compilation of influence plots for statistical areas 9 (left) and 8 (right), addressing target 

change using selected data (above) and clustering (below).  
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Figure 27. Frequency distributions of the standardized residuals (above) and Q-Q plots of standardized residuals for lognormal constant 

GLM analyses of statistical areas 9 (left) and 8 (right), based on the model with cluster as a covariate.  
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Figure 29. Annual abundance indices from standardizing SBT CPUE for statistical areas 9 (left) and 8 

(right) using lognormal constant models, fitted either with (red triangles) or without (black circles) vessel 

effects. The second and fourth rows show the ratios of each pair of indices, with log-linear trends fitted. 

The numbers indicate the annual rate of change in the ratio. The top four plots use selected data, while 

the lower four plots use clustered data.  




