CCSBT-ESC/2208/BGD 02 (Previously CCSBT-OMMP/2206/07) (ESC Agenda item 7.2) 2022 年のミナミマグロのコア船データおよび CPUE の更新作業 # Update work of the core vessel data and CPUE for southern bluefin tuna in 2022 伊藤智幸・高橋紀夫 Tomoyuki ITOH and Norio TAKAHASHI 水産研究·教育機構 水産資源研究所 Fisheries Resources Institute, Japan Fisheries Research and Education Agency ## 要旨 本文書は、CCSBT の管理方式に用いられるミナミマグロの資源指数であるコア船 C PUE についてまとめたものである。データ準備、GLM 並びに 2020 年に検討した GL MM と GAM を用いた CPUE 標準化、エリア重み付けについて記述する。データは 2021 年にまで更新した。2021 年の指数は、ベース GLM モデルによる W0.8 及び W0.5 においてこの 10 年間の平均と同じ水準であった。 #### Summary This paper summarizes the core vessel CPUE which is an abundance index of southern bluefin tuna used in the Management Procedure of CCSBT. It explains data preparation, CPUE standardization using GLM, as well as GLMM and GAM used in the 2020 ESC, and area weightings. The data were updated up to 2021. The index values in 2021, in W0.8 and W0.5 by the base GLM model, are at the same level as the average over the past 10 years. #### Introduction The stock management of southern bluefin tuna (SBT) *Thunnus maccoyii* in CCSBT entered a new era with the agreement and implementation of the Management Procedure (MP) in 2011. The adapted MP in CCSBT determines TAC by the prespecified rule using longline CPUE and aerial survey index, so that those indices should be evaluated with high transparency. The MP was reconstructed in 2019 and changed to include data of longline CPUE, gene tagging, POP and HSP. In terms of longline CPUE, however, because the shot-by-shot data of Japanese longline is critically important intellectual property for fishermen, Japanese government is not able to open it to CCSBT scientists. Therefore, we have been explaining data preparation and indices in detail in papers every year (e.g. Itoh and Takahashi 2020), and try to ensure transparency and evaluation. This is the updated paper for ESC in 2022. A new CPUE index is being developed for CCSBT (Itoh 2022), but the previous series of CPUE indexes has also been updated for comparison. ## Data preparation The dataset used was created from shot-by-shot records of Japanese longline fishing from Japan (1986-2021), Australia (RTMP data; 1989-2005), and New Zealand (Joint venture; 1990-2015). New Zealand joint venture with Japanese longline vessels was ceased in 2016. The data from Japan were based on the logbook data, except that RTMP data were used for the most recent years if logbook data were not yet available and RTMP data of the vessel were available. Note that data of operations especially for non-SBT targeting will be added to the dataset one or two years later when logbook data become available. The dataset was limited to the CCSBT statistical areas between Area 4 and Area 9 and months between April and September. Because there was no Japanese vessel chartered in New Zealand since 2016, data in Area 5 and Are 6 were scarce in the recent years. It was agreed in the CPUE group that the data in Area 5 and Area 6 should be combined into Area 4 and Area 7, respectively. CPUE was defined as the number of SBT for age 4 and older (age 4+) caught per 1000 hooks. Proportion of age 4+ by 5x5 degree square in longitude and latitude and month was calculated from the CCSBT catch-at-age database which added catch-at-age data made by Japan this year for 2021. Vessels which caught a large number of SBT (called "core vessels") were selected with a rule of x (top rank of SBT catch in a year) = 56 and y (number of years in the top ranks) = 3. A subset of vessels with a total data records of 203,333 were extracted from entire vessels (Table 1). The number of core vessels chosen ranged from 35 to 107 each year. For reference, Fig. 1a and Fig.1b show the number of squares operated in terms of 5x5-degree / month, 1x1-degree / month and the number of 1x1-degree squares in 5x5- degree square for all operations and operations with positive SBT (age 4+) catch, respectively. The following modifications were made to the dataset before CPUE standardization: deleted the records of the operations in south of 50 degree South; and deleted records for operations with extremely high CPUE (>120) as outliers. The shot-by-shot data were aggregated by 5x5 degrees in the month. Aggregated data of little effort (< 10,000 hooks) had been deleted. #### **CPUE** standardization CPUE were standardized by generalized linier model (GLM) using R (version 4.1.2). Small constant of 0.2, which was 10% of the nominal CPUE, was added to CPUE of age 4+ before log transformation to prevent log(0) (Nishida and Tsuji 1998). Base series: ``` log(CPUE+0.2) = Intercept + Year + Month + Area + Lat5 + BET_CPUE + YFT CPUE + (Month*Area) + (Year*Lat5) + (Year*Area) + Error, ``` where year, month, area, lat5 were treated as factors. glm function of R was used. Two additional CPUE series were made for monitoring purpose of the status of the stock and MP implementation. Monitoring series 1 (Reduced base model): ``` log(CPUE+0.2) = Intercept + Year + Month + Area + Lat5 + BET_CPUE + YFT_CPUE + (Month*Area) + Error, ``` Monitoring series 2: Same procedure as applied in Base series, but the data used were prepared at the shot-by-shot daily level, not the aggregated 5x5-degree/month level. Furthermore, two series developed in the ESC 2020 were updated. One is generalized linier mixed model (GLMM) where year-area interaction was used as a random effect term. The other is generalized additive model (GAM) which was called gam11. The gam11 was used for the stock assessment of SBT in the ESC 2020 (Anon. 2020). GLMM model: ``` log(CPUE+0.2) = Intercept + Year + Month + Area + Lat5 + BET_CPUE + YFT_CPUE + (Month*Area) + (Year*Lat5) + (1 | Year*Area) + Error; ``` where (1 | Year*Area) is the random term. The aggregated dataset in 5x5, month was used. Imer function in lme4 package was used. GAM model (gam 11): ``` log(CPUE +0.2) = Intercept + Year + te(Lon, Lat) +te(Lon, Month) = te(Year, Lat) + te(Year, Month) + te(Lat, Lon, Month) + te(Lat, Lon, Year) + s(BET=CPUE) + s(YFT_CPUE) + Error, ``` where it is described by R code as follows. ``` \begin{split} & \text{modgam11} < \text{-} \; \text{gam}(\text{log}(\text{cpue} + 0.2) \sim \text{yf} + \text{te}(\text{Lon, Lat, k} = \text{c}(40,4)) + \\ & \quad \text{te}(\text{Month, Lat, k} = \text{c}(6,4)) + \text{te}(\text{Lon, Month, k} = \text{c}(10,5)) + \\ & \quad \text{te}(\text{Year, Lat, k} = \text{c}(20,4)) + \text{te}(\text{Year, Month, k} = \text{c}(20,5)) + \\ & \quad \text{te}(\text{Lat, Lon, Month, k} = \text{c}(4,15,6)) + \\ & \quad \text{te}(\text{Lat, Lon, Year, k} = \text{c}(4,10,9)) + \text{s}(\text{BETcpue}) + \text{s}(\text{YFTcpue}), \\ & \quad \text{data} = \text{data, gamma} = 2) \end{split} ``` The shot-by-shot dataset was used for GAM. Estimated parameter values for Base case are shown in Table 2. The ANOVA statistics for the three GLM cases are shown in Table 3. The standardized CPUE (ls-mean) and QQ plots of the residuals are shown in Fig.2 and Fig. 3. AIC and BIC were calculated for the base model and the reduced base model of GLMs and GLMM where used the same dataset. The base model is selected from the viewpoint of AIC, but not from BIC (Table 4). ## Area weighted standardized CPUE Using the estimated parameters obtained from CPUE standardization, predict values were calculated for a test dataset. The test dataset were constructed by all combination of strata (year [1986 to the most recent year] x month [4-9] x area [4, 7, 8, 9] x lat5 [-30, -35, -40, -45]). CPUE of bigeye tuna (or yellowfin tuna) used in the test data was a mean CPUE of bigeye tuna in all records. Same test dataset was used for GLMs and GLMM, while that used for GAM was different because it had longitude strata instead of area strata. Note that records in the test dataset used were only those corresponds with the strata in area weighting (i.e. eliminate records in strata where no fishing operation have been done). Area weightings were applied to the test dataset in two ways; the Constant Square (CS) and Variable Square (VS) abundance indices by the following equations: ``` CS_{4+,y} = \sum_{m} \sum_{a} \sum_{l} (AI_{CS})_{(1969\text{-present})} [\exp(Intercept + Year + Month + Area + Lat5 + BET_CPUE + YFT_CPUE + (Month*Area) + (Year*Lat5) + (Year*Area) + <math>\sigma^{2}/2 - 0.2] VS_{4+,y} = \sum_{m} \sum_{a} \sum_{l} (AI_{VS})_{ymal} [\exp(Intercept + Year + Month + Area + Lat5 + BET_CPUE + YFT_CPUE + (Month*Area) + (Year*Lat5) + (Year*Area) + <math>\sigma^{2}/2 - 0.2] ``` where $CS_{4+,y}$ is the CS abundance index for age 4+ and y-th year, $VS_{4+,y}$ is the VS abundance index for age 4+ and y-th year, (AI_{CS})_(1969-present) is the area index of the CS model for the period 1969-present, (AI_{VS})_{ymal} is the area index of the VS model for y-th year, m-th month, a-th SBT statistical area, and l-th latitude, σ is the mean square error in the GLM analyses, Then, w0.5 and w0.8 (B-ratio and geostat proxies) were calculated using the equation below. Note that w0.9 and w0.6 were used in GAM11. $$w0.8_{y} = 0.8 \times \frac{CS_{4+,y}}{mean(CS_{4+,y})} + 0.2 \times \frac{VS_{4+,y}}{mean(VS_{4+,y})}$$ $$w0.5_y = 0.5 \times \frac{CS_{4+,y}}{mean(CS_{4+,y})} + 0.5 \times \frac{VS_{4+,y}}{mean(VS_{4+,y})}$$ The area weighted CPUE value in the latest year (2021), which was mainly from RTMP data and targeting on SBT, was corrected from the average ratio of CPUEs between RTMP and Logbook data over the recent three years according to the agreement in the CPUE web-meeting held in March 2010. The constant was set as 1.0 because the average value over three years exceeds 1.0 (ratio Logbook based CPUE in W0.8 / RTMP based CPUE in W0.8 in the core vessel dataset¹). The area weighted CPUE series between 1986 and 2021 were calibrated to the historical time series since 1969 based on the agreed method (SAG9 Report in 2008, attachment 5) derived from the GLM model using data of all vessels described in Nishida and Tsuji (1998). At the 3rd
OMMP Technical meeting held in Seattle in 2010, it was agreed that the pre-1986 series used in MP implementation will be fixed at the value estimated based on data to 2008 only. Calibration would thus in future always be based upon the 1986-2008 points of this series. Calculated area weighted standardized CPUEs are shown in Table 5 and Fig. 4. The relative index values of W0.8 in 2021 using the base GLM model (1.289) is about the same as 97% of the average (1.322) for the past 10 years. That of W0.5 in 2021 (0.932) is as same as the average (0.936) for the past 10 years. The trends of the indices between the GLM model (Base vs Reduced Base) are similar to each other but different since 2010 (Fig. 4). The indices by Reduced Base is moderately increased while that by Base increased and decreased largely. The differences between the two GLM models were interaction terms of *Year*Lat5* and *Year*Area* which were included in Base but not included in Reduced Base. The indices of Base by shot-by-shot _ ¹ In order to prevent a luck of data for interaction terms, the threshold to be deleted for the little effort was lowered to 1000 instead of 10,000. dataset jump in 2018 while drop in 2021. Compare to the indices by Base in GLM that jump in 2018 and 2020, the indices by GLMM are similar until 2017 and show moderate change since 2018 (Fig. 5). Those by GAM11 are similar until 2010 and show earlier increase which reaches a peak in 2015, and show decrease up to 2021. #### Reference - Anonymous (2020) Report of the twenty fifth meeting of the Scientific Committee, CCSBT. 7 Sep. 2020, Online. 142pp. - Itoh, T., and N. Takahashi. 2020. Update of the core vessel data and CPUE for southern bluefin tuna in 2020. CCSBT-OMMP/2006/11. - Itoh, T. 2022. Development of a new CPUE index for southern bluefin tuna in CCSBT using GAM. CCSBT-OMMP/2206/07. - Nishida, T., and S. Tsuji. 1998. Estimation of abundance indices of southern bluefin tuna (*Thunnus maccoyii*) based on the coarse scale Japanese longline fisheries data (1969-97). CCSBT/SC/9807/13. Table 1. Number of records in the dataset used. | Year | All vessels | All vessels | All vessels | All vessels | Core vessel | Core vessel | |-------|-------------|-------------|-------------|-------------|-------------|---------------| | | Japan | Australia | New Zealand | Total | Total | Vessel number | | 1986 | 27,005 | 0 | 0 | 27,005 | 4,068 | 35 | | 1987 | 26,759 | 0 | 0 | 26,759 | 4,804 | 41 | | 1988 | 24,418 | 0 | 0 | 24,418 | 5,353 | 49 | | 1989 | 25,471 | 1,156 | 0 | 25,471 | 6,897 | 63 | | 1990 | 20,878 | 504 | 475 | 21,055 | 6,546 | 73 | | 1991 | 19,980 | 1,204 | 460 | 20,088 | 7,165 | 73 | | 1992 | 19,449 | 1,717 | 499 | 19,449 | 7,102 | 86 | | 1993 | 17,284 | 2,001 | 486 | 17,463 | 6,851 | 83 | | 1994 | 14,272 | 1,394 | 268 | 14,327 | 6,227 | 92 | | 1995 | 13,977 | 800 | 373 | 14,146 | 6,456 | 97 | | 1996 | 14,854 | 0 | 0 | 14,854 | 7,057 | 97 | | 1997 | 16,701 | 0 | 379 | 16,777 | 7,832 | 93 | | 1998 | 16,620 | 0 | 310 | 16,760 | 8,390 | 107 | | 1999 | 14,720 | 0 | 306 | 14,800 | 8,290 | 101 | | 2000 | 12,011 | 0 | 265 | 12,011 | 7,315 | 99 | | 2001 | 14,273 | 0 | 198 | 14,307 | 8,028 | 103 | | 2002 | 10,949 | 0 | 228 | 10,996 | 6,543 | 94 | | 2003 | 11,857 | 0 | 294 | 11,928 | 6,742 | 93 | | 2004 | 13,447 | 0 | 349 | 13,453 | 8,686 | 97 | | 2005 | 14,046 | 0 | 198 | 14,046 | 8,992 | 97 | | 2006 | 9,307 | 0 | 183 | 9,307 | 6,562 | 87 | | 2007 | 5,768 | 0 | 387 | 5,818 | 4,495 | 84 | | 2008 | 6,555 | 0 | 167 | 6,523 | 5,054 | 91 | | 2009 | 4,723 | 0 | 231 | 4,753 | 4,093 | 74 | | 2010 | 3,586 | 0 | 144 | 3,717 | 3,116 | 66 | | 2011 | 4,261 | 0 | 151 | 4,413 | 3,496 | 64 | | 2012 | 4,377 | 0 | 163 | 4,530 | 3,767 | 75 | | 2013 | 3,990 | 0 | 148 | 3,978 | 3,334 | 69 | | 2014 | 4,795 | 0 | 186 | 4,791 | 3,853 | 74 | | 2015 | 5,114 | 0 | 181 | 5,114 | 4,135 | 74 | | 2016 | 5,571 | 0 | 0 | 5,571 | 4,635 | 74 | | 2017 | 4,633 | 0 | 0 | 4,625 | 3,881 | 72 | | 2018 | 5,038 | 0 | 0 | 5,038 | 4,301 | 71 | | 2019 | 3,960 | 0 | 0 | 3,960 | 3,382 | 68 | | 2020 | 4,000 | 0 | 0 | 4,000 | 3,270 | 59 | | 2021 | 3,870 | 0 | 0 | 3,870 | 2,615 | 48 | | Total | 428,519 | 8,776 | 7,029 | 430,121 | 203,333 | | | | | | | | | | Data are from Area 4-9 and month 4-9. Table 2. Estimated parameter values in GLM Base model | D | Estimate | Chile | 41/-1 | Doobt | D | F-414- | Chile | tValue | Decks | |------------------------------------|----------------------------|----------------------------|----------------------|-------------------------|--|------------------------------|----------------------------|---------------|-------------------------| | Parameter
(Intercept) | -2.0028 | StdErr
0.2210 | tValue
-9.06 | 0.000 | Parameter
year1988_lat540 | Estimate
-0.3777 | StdErr
0.5176 | -0.73 | Probt
0.466 | | year1987 | | 0.2210 | | | year1989_lat540 | | 0.5176 | | 0.400 | | year1988 | -0.1409
-0.4235 | 0.2747 | -0.49
-1.54 | 0.626
0.123 | year1989_lat540 | -0.0490
0.4663 | 0.5370 | -0.09
0.88 | 0.930 | | year1989 | 0.1445 | 0.3376 | 0.43 | 0.669 | year1991_lat540 | 0.0527 | 0.4944 | 0.11 | 0.915 | | year1990 | 0.0030 | 0.2906 | 0.43 | 0.992 | year1992_lat540 | 0.1040 | 0.4931 | 0.11 | 0.833 | | year1991 | 0.3366 | 0.2791 | 1.21 | 0.228 | year1993_lat540 | 0.8849 | 0.4957 | 1.79 | 0.074 | | year1992 | 0.3300 | 0.2676 | 0.51 | 0.608 | year1994_lat540 | 1.1147 | 0.5270 | 2.12 | 0.074 | | year1993 | 0.6838 | 0.2717 | 2.52 | 0.012 | year1995_lat540 | 0.3255 | 0.5148 | 0.63 | 0.527 | | year1994 | 0.0949 | 0.2649 | 0.36 | 0.720 | year1996_lat540 | 0.5365 | 0.5051 | 1.06 | 0.288 | | year1995 | 0.4171 | 0.2726 | 1.53 | 0.126 | year1997_lat540 | 0.9422 | 0.5249 | 1.80 | 0.073 | | year1996 | 0.3747 | 0.2657 | 1.41 | 0.158 | year1998_lat540 | 0.4828 | 0.4930 | 0.98 | 0.327 | | year1997 | 0.0647 | 0.2972 | 0.22 | 0.828 | year1999_lat540 | 1.0587 | 0.5372 | 1.97 | 0.049 | | year1998 | -0.2443 | | -0.88 | 0.381 | year2000_lat540 | | | 2.63 | 0.049 | | year1998
year1999 | -0.2443 | 0.2791
0.3386 | -0.88 | 0.381 | year2000_lat540
year2001_lat540 | 1.4128 | 0.5377 | 1.55 | 0.009 | | | | | | | | 0.8109 | 0.6265 | | | | year2000 | -0.4861 | 0.3243 | -1.50 | 0.134 | year2002_lat540 | 0.6935 | 0.5603 | 1.11 | 0.268 | | year2001 | -0.1366 | 0.2978 | -0.46 | 0.647 | year2003_lat540 | 0.8576 | | 1.53 | 0.126 | | year2002 | -0.3454 | 0.3786 | -0.91 | 0.362 | year2004_lat540 | 0.3965 | 0.5249 | 0.76 | 0.450 | | year2003 | -0.2075 | 0.2896 | -0.72 | 0.474 | year2005_lat540 | -0.0465 | 0.5269 | -0.09 | 0.930 | | year2004 | -0.0524 | 0.2896 | -0.18 | 0.856 | year2006_lat540 | 0.7350 | 0.5504 | 1.34 | 0.182 | | year2005 | -0.2638 | 0.3052 | -0.86 | 0.387 | year2007_lat540 | -0.1072 | 0.5155 | -0.21 | 0.835 | | year2006 | -0.5387 | 0.3380 | -1.59 | 0.111 | year2008_lat540 | 1.4958 | 0.5332 | 2.81 | 0.005 | | year2007 | -0.3017 | 0.2794 | -1.08 | 0.280 | year2009_lat540 | 1.9510 | 0.5339 | 3.65 | 0.000 | | year2008 | 0.0844 | 0.2805 | 0.30 | 0.764 | year2010_lat540 | 1.7851 | 0.5406 | 3.30 | 0.001 | | year2009 | -0.2401 | 0.2843 | -0.84 | 0.398 | year2011_lat540 | 1.1206 | 0.5485 | 2.04 | 0.041 | | year2010 | -0.5497 | 0.2848 | -1.93 | 0.054 | year2012_lat540 | 0.0037 | 0.5163 | 0.01 | 0.994 | | year2011 | -0.3919 | 0.2621 | -1.50 | 0.135 | year2013_lat540 | 0.4007 | 0.5865 | 0.68 | 0.494 | | year2012 | -0.6011 | 0.2620 | -2.29 | 0.022 | year2014_lat540 | 1.4273 | 0.5719 | 2.50 | 0.013 | | year2013 | -0.4418 | 0.2759 | -1.60 | 0.109 | year2015_lat540 | 1.8710 | 0.5544 | 3.37 | 0.001 | | year2014 | -0.7286 | 0.2911 | -2.50 | 0.012 | year2016_lat540 | 1.5207 | 0.5677 | 2.68 | 0.007 | | year2015 | -0.3394 | 0.2790 | -1.22 | 0.224 | year2017_lat540 | 2.7530 | 0.6158 | 4.47 | 0.000 | | year2016 | -0.5182 | 0.2898 | -1.79 | 0.074 | year2018_lat540 | 4.5111 | 0.7718 | 5.85 | 0.000 | | year2017 | -0.6615 | 0.2902 | -2.28 | 0.023 | year2019_lat540 | 3.8336 | 0.6761 | 5.67 | 0.000 | | year2018 | -0.6753 | 0.3382 | -2.00 | 0.046 | year2020_lat540 | 3.2146 | 0.6594 | 4.87 | 0.000 | | year2019 | -0.8876 | 0.3785 | -2.34 | 0.019 | year2021_lat540 | 2.8457 | 0.6986 | 4.07 | 0.000 | | year2020 | -0.7616 | 0.3561 | -2.14 | 0.033 | year1987_lat545 | 0.7318 | 0.6807 | 1.07 | 0.282 | | year2021 | -0.1036 | 0.4092 | -0.25 | 0.800 | year1988_lat545 | -0.1849 | 0.6154 | -0.30 | 0.764 | | month5 | 1.0153 | 0.1016 | 9.99 | 0.000 | year1989_lat545 | 0.0662 | 0.6751 | 0.10 | 0.922 | | month6 | 1.1713 | 0.0938 | 12.49 | 0.000 | year1990_lat545 | 0.7609 | 0.6227 | 1.22 | 0.222 | | month7 | 1.6011 | 0.0938 | 17.06 | 0.000 | year1991_lat545 | -0.2423 | 0.6286 | -0.39 | 0.700 | | month8 | 1.6576 | 0.1057 | 15.68 | 0.000 | year1992_lat545 | -0.0062 | 0.6583 | -0.01 | 0.992 | | month9 | 1.8604 | 0.1330 | 13.99 | 0.000 | year1993_lat545 | 0.8905 | 0.6403 | 1.39 | 0.164 | | area7 | 1.8322 | 0.4137 | 4.43 | 0.000 | year1994_lat545 | 0.8535 | 0.7180 | 1.19 | 0.235 | | area8 | -0.7577 | 0.3683 | -2.06 | 0.040 | year1995_lat545 | -0.1911 | 0.7054 | -0.27 | 0.787 | | area9 | 1.4914 | 0.3450 | 4.32 | 0.000 | year1996_lat545 | 0.5827 | 0.6660 | 0.87 | 0.382 | | lat535 | 1.3952 | 0.3556 | 3.92 | 0.000 | year1997_lat545 | 0.9738 | 0.6657 | 1.46 | 0.382 | | lat540 | 0.9215 | 0.3963 | 2.32 | 0.020 | year1998_lat545 | 0.8043 | 0.6362 | 1.26 | 0.206 | | lat545 | 0.7450 | | 1.52 | | year1999_lat545 | | 0.6735 | 1.80 | 0.200 | | | | 0.4902 | | 0.129 | | 1.2120 | | | | | cpue.bet | -0.1471 | 0.0101 | -14.56 | 0.000 | year2000_lat545 | 1.1000 | 0.6988 | 1.57 | 0.116 | | cpue.yft | -0.0750 | 0.0065 | -11.63 | 0.000 | year2001_lat545 | 0.9601 | 0.6501 | 1.48 | 0.140 | | month5_area7 | -0.8673 | 0.1300 | -6.67 | 0.000 | year2002_lat545 | 0.7862 | 0.7823 | 1.01 | 0.315 | | month6_area7 | -1.0131 | 0.1300 | -7.79 | 0.000 | year2003_lat545 | 1.0733 | 0.7581 | 1.42 | 0.157 | | month7_area7 | -1.4150 | 0.1596 | -8.87 | 0.000 | year2004_lat545 | 0.7425 | 0.6896 | 1.08 | 0.282 | | month8_area7 | -1.8682 |
0.3221 | -5.80 | 0.000 | year2005_lat545 | 0.5610 | 0.6754 | 0.83 | 0.406 | | month9_area7 | -2.2291 | 0.2453 | -9.09 | 0.000 | year2006_lat545 | 1.3233 | 0.7731 | 1.71 | 0.087 | | month5_area8 | -0.6134 | 0.1884 | -3.26 | 0.001 | year2007_lat545 | -0.5031 | 0.8069 | -0.62 | 0.533 | | month6_area8 | 0.1348 | 0.2011 | 0.67 | 0.503 | year2008_lat545 | 1.9893 | 0.6574 | 3.03 | 0.002 | | month7_area8 | 0.3976 | 0.1796 | 2.21 | 0.027 | year2009_lat545 | 1.8811 | 0.8252 | 2.28 | 0.023 | | month8_area8 | 0.5392 | 0.1776 | 3.04 | 0.002 | year2010_lat545 | 1.8479 | 0.9681 | 1.91 | 0.056 | | month9_area8 | 0.0264 | 0.1961 | 0.13 | 0.893 | year2011_lat545 | 1.0898 | 0.6841 | 1.59 | 0.111 | | month5_area9 | -0.8491 | 0.1177 | -7.21 | 0.000 | year2012_lat545 | 0.4337 | 0.7323 | 0.59 | 0.554 | | month6_area9 | -0.9308 | 0.1112 | -8.37 | 0.000 | year2013_lat545 | 0.6951 | 0.8261 | 0.84 | 0.400 | | month7_area9 | -1.1267 | 0.1123 | -10.03 | 0.000 | year2014_lat545 | 1.5384 | 0.8097 | 1.90 | 0.058 | | month8_area9 | -1.0938 | 0.1277 | -8.57 | 0.000 | year2015_lat545 | 1.5472 | 0.8039 | 1.92 | 0.054 | | month9_area9 | -1.4472 | 0.1577 | -9.18 | 0.000 | year2016_lat545 | 1.3134 | 0.9412 | 1.40 | 0.163 | | year1987_lat535 | -0.0942 | 0.5000 | -0.19 | 0.851 | year2017_lat545 | 2.8605 | 0.8334 | 3.43 | 0.001 | | year1988_lat535 | -0.6401 | 0.4573 | -1.40 | 0.162 | year2018_lat545 | 4.6023 | 0.9552 | 4.82 | 0.000 | | year1989_lat535 | -0.5208 | 0.4970 | -1.05 | 0.295 | year2019_lat545 | 4.0741 | 1.0125 | 4.02 | 0.000 | | year1990_lat535 | -0.2690 | 0.4572 | -0.59 | 0.556 | year2020_lat545 | 3.7116 | 0.8721 | 4.26 | 0.000 | | year1991_lat535 | -0.6346 | 0.4361 | -1.46 | 0.146 | year2021_lat545 | 3.0966 | 1.0316 | 3.00 | 0.003 | | year1992_lat535 | -0.4575 | 0.4340 | -1.05 | 0.292 | year1987_area7 | -0.4984 | 0.5566 | -0.90 | 0.371 | | year1993_lat535 | -0.7127 | 0.4360 | -1.63 | 0.102 | year1988_area7 | 0.3855 | 0.5081 | 0.76 | 0.448 | | year1994_lat535 | -0.2876 | 0.4653 | -0.62 | 0.537 | year1989_area7 | -0.3795 | 0.5222 | -0.73 | 0.467 | | year1995_lat535 | -0.7434 | 0.4555 | -1.63 | 0.103 | year1990_area7 | -0.5928 | 0.5156 | -1.15 | 0.250 | | year1996_lat535 | -0.7492 | 0.4425 | -1.69 | 0.091 | year1991_area7 | -0.7817 | 0.4881 | -1.60 | 0.109 | | year1997_lat535 | 0.0940 | 0.4626 | 0.20 | 0.839 | year1992_area7 | -0.1879 | 0.4938 | -0.38 | 0.704 | | year1998_lat535 | -0.2220 | 0.4334 | -0.51 | 0.608 | year1993_area7 | -1.5238 | 0.5010 | -3.04 | 0.002 | | year1999_lat535 | 0.1676 | 0.4808 | 0.35 | 0.727 | year1994_area7 | -0.5896 | 0.5742 | -1.03 | 0.305 | | year2000_lat535 | 0.4105 | 0.4773 | 0.86 | 0.390 | year1995_area7 | 0.0089 | 0.5142 | 0.02 | 0.986 | | year2001_lat535 | -0.2009 | 0.4587 | -0.44 | 0.662 | year1996_area7 | -0.7169 | 0.5139 | -1.39 | 0.163 | | year2002_lat535 | 0.2852 | 0.5225 | 0.55 | 0.585 | year1997_area7 | -0.8787 | 0.5133 | -1.71 | 0.087 | | year2003_lat535 | 0.4971 | 0.4725 | 1.05 | 0.293 | year1998_area7 | -0.3852 | 0.5012 | -0.77 | 0.442 | | year2004_lat535 | 0.2022 | 0.4663 | 0.43 | 0.665 | year1999_area7 | -0.5812 | 0.5025 | -1.16 | 0.247 | | year2005_lat535 | -0.2514 | 0.4668 | -0.54 | 0.590 | year2000_area7 | -0.9129 | 0.4979 | -1.83 | 0.067 | | year2006_lat535 | 0.2197 | 0.4977 | 0.44 | 0.659 | year2001_area7 | -0.6254 | 0.5074 | -1.23 | 0.218 | | year2007_lat535 | -0.3262 | 0.4515 | -0.72 | 0.470 | year2002_area7 | -0.0254 | 0.5881 | -0.15 | 0.884 | | year2007_lat535
year2008_lat535 | 0.2711 | 0.4515 | 0.57 | 0.567 | year2002_area7
year2003_area7 | -1.1171 | 0.5677 | -1.97 | 0.049 | | year2008_lat535
year2009_lat535 | 1.1275 | | 2.43 | 0.015 | year2003_area7
year2004_area7 | -0.7630 | 0.5364 | -1.97 | 0.049 | | | | 0.4638 | | | | | | | | | year2010_lat535 | 0.6005 | 0.4773 | 1.26 | 0.208 | year2005_area7 | -0.4426 | 0.5518 | -0.80 | 0.423 | | year2011_lat535 | 0.3012 | 0.4747 | 0.63 | 0.526 | year2006_area7 | -0.7334 | 0.5317 | -1.38 | 0.168 | | year2012_lat535 | -0.4901 | 0.4509 | -1.09 | 0.277 | year2007_area7 | -0.0756 | 0.5347 | -0.14 | 0.888 | | year2013_lat535 | -0.0593 | 0.5110 | -0.12 | 0.908 | year2008_area7 | -1.1371 | 0.5573 | -2.04 | 0.041 | | year2014_lat535 | 0.5936 | 0.4737 | 1.25 | 0.210 | year2009_area7 | -0.9222 | 0.5611 | -1.64 | 0.100 | | year2015_lat535 | 0.4253 | 0.4827 | 0.88 | 0.378 | year2010_area7 | -0.0766 | 0.5677 | -0.13 | 0.893 | | year2016_lat535 | 0.7706 | 0.4797 | 1.61 | 0.108 | year2011_area7 | 0.2916 | 0.5773 | 0.51 | 0.613 | | year2017_lat535 | 0.5551 | 0.4802 | 1.16 | 0.248 | year2012_area7 | 1.7426 | 0.5560 | 3.13 | 0.002 | | year2018_lat535 | 1.6113 | 0.5462 | 2.95 | 0.003 | year2013_area7 | 0.9028 | 0.6162 | 1.47 | 0.143 | | | 1.7231 | 0.5579 | 3.09 | 0.002 | year2014_area7 | 0.4265 | 0.5943 | 0.72 | 0.473 | | year2019_lat535 | | | | | 0015 7 | | | | | | year2020_lat535 | 1.2584 | 0.5423 | 2.32 | 0.020 | year2015_area7 | -0.3748 | 0.5937 | -0.63 | 0.528 | | | 1.2584
1.4272
0.4866 | 0.5423
0.6126
0.5575 | 2.32
2.33
0.87 | 0.020
0.020
0.383 | year2015_area7
year2016_area7
year2017_area7 | -0.3748
0.1165
-1.0512 | 0.5937
0.6081
0.6538 | -0.63
0.19 | 0.528
0.848
0.108 | | Parameter | Estimate | StdErr | tValue | Probt | |----------------------------------|---------------------|--------------------|-------------------|----------------| | year2018_area7 | -2.7831 | 0.7835 | -3.55 | 0.000 | | year2019_area7 | -1.8928 | 0.6665 | -2.84 | 0.005 | | year2020_area7 | -1.2299 | 0.6536 | -1.88 | 0.060 | | year2021_area7 | -1.6103 | 0.6519 | -2.47 | 0.014 | | year1987_area8 | 0.0406 | 0.4766 | 0.09 | 0.932 | | year1988_area8 | 0.8259 | 0.4401 | 1.88 | 0.061 | | year1989_area8 | 0.1284 | 0.4424 | 0.29 | 0.772 | | year1990_area8 | 0.1585 | 0.4480 | 0.35 | 0.723 | | year1991_area8 | -0.0287 | 0.4212 | -0.07 | 0.946 | | year1992_area8
year1993_area8 | 0.1756
-0.1543 | 0.4183
0.4227 | 0.42
-0.37 | 0.675
0.715 | | year1995_area6
year1994_area8 | 0.3225 | 0.4227 | 0.69 | 0.715 | | year1994_areas
year1995_area8 | 0.3225 | 0.4708 | 1.01 | 0.493 | | year1996_area8 | 0.2327 | 0.4744 | 0.49 | 0.624 | | year1997_area8 | -0.4065 | 0.4696 | -0.87 | 0.387 | | year1998_area8 | 0.4943 | 0.4156 | 1.19 | 0.234 | | year1999_area8 | 0.1497 | 0.4180 | 0.36 | 0.720 | | year2000_area8 | 0.2134 | 0.4666 | 0.46 | 0.647 | | year2001_area8 | 0.1539 | 0.4520 | 0.34 | 0.733 | | year2002_area8 | 0.0749 | 0.4661 | 0.16 | 0.872 | | year2003_area8 | -0.2271 | 0.5021 | -0.45 | 0.651 | | year2004_area8 | 0.6923 | 0.4535 | 1.53 | 0.127 | | year2005_area8 | 1.2950 | 0.4546 | 2.85 | 0.004 | | year2006_area8 | 0.2564 | 0.4519 | 0.57 | 0.570 | | year2007_area8 | 0.4345 | 0.4411 | 0.98 | 0.325 | | year2008_area8 | -0.6358 | 0.4607 | -1.38 | 0.168 | | year2009_area8 | -1.2309 | 0.4477 | -2.75 | 0.006 | | year2010_area8 | 0.3903 | 0.4625 | 0.84 | 0.399 | | year2011_area8 | 0.2995 | 0.4659 | 0.64 | 0.520 | | year2012_area8 | 1.2522 | 0.4453 | 2.81 | 0.005 | | year2013_area8 | 0.9856 | 0.4953 | 1.99 | 0.047 | | year2014_area8 | 0.5329 | 0.4483 | 1.19 | 0.235 | | year2015_area8 | 0.2340 | 0.4712 | 0.50 | 0.620 | | year2016_area8 | 0.2953 | 0.4563 | 0.05 | 0.518 | | year2017_area8
year2018_area8 | -0.3992 | 0.4664 | -0.77 | 0.919
0.443 | | year2019_area8 | -0.2424 | 0.5193 | -0.77 | 0.641 | | year2020_area8 | 0.8136 | 0.5016 | 1.62 | 0.105 | | year2021_area8 | -1.3705 | 0.5277 | -2.60 | 0.009 | | year1987_area9 | 0.0103 | 0.4657 | 0.02 | 0.982 | | year1988_area9 | 0.9706 | 0.4267 | 2.27 | 0.023 | | year1989_area9 | -0.1230 | 0.4346 | -0.28 | 0.777 | | year1990_area9 | -0.4826 | 0.4343 | -1.11 | 0.267 | | year1991_area9 | -0.4045 | 0.3948 | -1.02 | 0.306 | | year1992_area9 | -0.1453 | 0.4012 | -0.36 | 0.717 | | year1993_area9 | -0.9528 | 0.4006 | -2.38 | 0.017 | | year1994_area9 | -0.8671 | 0.4385 | -1.98 | 0.048 | | year1995_area9 | -0.3416 | 0.4217 | -0.81 | 0.418 | | year1996_area9 | -0.7405 | 0.4099 | -1.81 | 0.071 | | year1997_area9 | -0.9623 | 0.4107 | -2.34 | 0.019 | | year1998_area9 | -0.0223 | 0.3899 | -0.06 | 0.954 | | year1999_area9 | -0.4466
-0.8077 | 0.4076
0.4127 | -1.10
-1.96 | 0.273 | | year2000_area9 | -0.2535 | 0.4127 | -0.61 | 0.542 | | year2001_area9
year2002_area9 | 0.4412 | 0.4161 | -0.61 | 0.542 | | year2003_area9 | -0.2729 | 0.4686 | -0.58 | 0.560 | | year2004_area9 | -0.2796 | 0.4226 | -0.66 | 0.508 | | year2005_area9 | 0.2247 | 0.4147 | 0.54 | 0.588 | | year2006_area9 | -0.6989 | 0.4200 | -1.66 | 0.096 | | year2007_area9 | -0.2060 | 0.4161 | -0.50 | 0.621 | | year2008_area9 | -1.5617 | 0.4377 | -3.57 | 0.000 | | year2009_area9 | -1.3968 | 0.4346 | -3.21 | 0.001 | | year2010_area9 | -0.6219 | 0.4345 | -1.43 | 0.152 | | year2011_area9 | -0.0920 | 0.4568 | -0.20 | 0.840 | | year2012_area9 | 1.3626 | 0.4252 | 3.20 | 0.001 | | year2013_area9 | 0.8599 | 0.5017 | 1.71 | 0.087 | | year2014_area9 | 0.3723 | 0.4592 | 0.81 | 0.418 | | year2015_area9 | -0.1092 | 0.4578 | -0.24 | 0.811 | | year2016_area9 | 0.0678 | 0.4633 | 0.15 | 0.884 | | year2017_area9
year2018_area9 | -0.7328
-2.46745 | 0.5239
0.680271 | -1.40
-3.62715 | 0.162 | | year2018_area9
year2019_area9 | -2.46745 | 0.542229 | -3.01345 | 0.000291 | | year2019_area9
year2020_area9 | -1.5252 | 0.544457 | -2.80132 | 0.002002 | | year2021_area9 | -1.5232 | 0.5578 | -2.86 | 0.003118 | | , | | | 2.50 | | Table 3. ANOVA statistics | Base | Type_2 | | | |
--|---|--|---|--| | name | Sum Sq | Df | F value | Pr(>F) | | year | 324.98 | 35 | 18.601 | 1.048E-103 | | month | 233.63 | 5 | 93.607 | 1.427E-92 | | area | 93.41 | 3 | 62.374 | 3.010E-39 | | lat5 | 284.76 | 3 | 190.158 | 5.813E-114 | | cpue.bet | 105.80 | 1 | 211.947 | 1.286E-46 | | cpue.yft
month:area | 67.50
152.01 | 1
15 | 135.223
20.302 | 1.121E-30
2.371E-53 | | year:lat5 | 185.89 | 105 | 3.547 | 1.926E-29 | | year:area | 183.19 | 105 | 3.495 | 1.130E-28 | | Residuals | 1,690.20 | 3,386 | 01100 | 111002 20 | | Base | Type_3 | | | | | name | Sum Sq | Df | F value | Pr(>F) | | (Intercept) | 47.50 | 1 | 95.151 | 3.447E-22 | | year | 76.41 | 35 | 4.374 | 2.915E-16 | | month | 202.39 | 5 | 81.091 | 1.284E-80 | | area | 76.84 | 3 | 51.312 | 1.992E-32 | | lat5 | 350.59 | 3 | 234.113 | 4.964E-138 | | cpue.bet | 105.80 | 1 | 211.947
135.223 | 1.286E-46 | | cpue.yft
month:area | 67.50
152.01 | 1
15 | 20.302 | 1.121E-30
2.371E-53 | | year:lat5 | 185.89 | 105 | 3.547 | 1.926E-29 | | year:area | 183.19 | 105 | 3.495 | 1.12997E-28 | | Residuals | 1,690.20 | 3,386 | 5.433 | 1.125572 20 | | | | | | | | RedB | Type_2 | | | B / E | | name | Sum Sq
324.98 | Df
35 | F value
15.564 | Pr(>F)
1.423E-85 | | year
month | 273.75 | 5 | 91.776 | 3.642E-91 | | area | 129.67 | 3 | 72.457 | 1.698E-45 | | lat5 | 345.04 | 3 | 192.795 | 6.166E-116 | | cpue.bet | 191.18 | 1 | 320.467 | 1.013E-68 | | cpue.yft | 68.62 | 1 | 115.029 | 1.939E-26 | | month:area | 176.63 | 15 | 19.739 | 7.144E-52 | | Residuals | 2,145.23 | 3,596 | | | | RedB | Type_3 | | | | | | | | | | | name | Sum Sq | Df | F value | Pr(>F) | | (Intercept) | 60.06 | 1 | 100.678 | 2.191E-23 | | (Intercept)
year | 60.06
324.98 | 1
35 | 100.678
15.564 | 2.191E-23
1.423E-85 | | (Intercept)
year
month | 60.06
324.98
210.18 | 1 | 100.678
15.564
70.463 | 2.191E-23
1.423E-85
1.600E-70 | | (Intercept)
year | 60.06
324.98 | 1
35
5 | 100.678
15.564 | 2.191E-23
1.423E-85 | | (Intercept)
year
month
area | 60.06
324.98
210.18
172.97 | 1
35
5
3 | 100.678
15.564
70.463
96.647 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60 | | (Intercept)
year
month
area
lat5 | 60.06
324.98
210.18
172.97
345.04 | 1
35
5
3 | 100.678
15.564
70.463
96.647
192.795 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116 | | (Intercept)
year
month
area
lat5
cpue.bet | 60.06
324.98
210.18
172.97
345.04
191.18 | 1
35
5
3
3 | 100.678
15.564
70.463
96.647
192.795
320.467 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116
1.013E-68 | | (Intercept) year month area lat5 cpue.bet cpue.yft | 60.06
324.98
210.18
172.97
345.04
191.18
68.62 | 1
35
5
3
3
1
1 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116
1.013E-68
1.939E-26 | | (Intercept)
year
month
area
lat5
cpue.bet
cpue.yft
month:area
Residuals | 60.06
324.98
210.18
172.97
345.04
191.18
68.62
176.63
2,145.23 | 1
35
5
3
3
1
1
15 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116
1.013E-68
1.939E-26 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area | 60.06
324.98
210.18
172.97
345.04
191.18
68.62
176.63 | 1
35
5
3
3
1
1
15 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116
1.013E-68
1.939E-26 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS | 60.06
324.98
210.18
172.97
345.04
191.18
68.62
176.63
2,145.23 | 1
35
5
3
3
1
1
15
3,596 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029
19.739 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116
1.013E-68
1.939E-26
7.144E-52 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name | 60.06
324.98
210.18
172.97
345.04
191.18
68.62
176.63
2,145.23
Type_2
Sum Sq | 1
35
5
3
3
1
1
15
3,596 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029
19.739 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116
1.013E-68
1.939E-26
7.144E-52 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 | 1
35
5
3
3
1
1
5
3,596 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029
19.739
F value
792.830 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116
1.013E-68
1.939E-26
7.144E-52
Pr(>F) | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 | 1
35
5
3
3
1
1
15
3,596
Df
35
5
3 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029
19.739
F value
792.830
1,469.080
428.016
3,841.835 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116
1.013E-68
1.939E-26
7.144E-52
Pr(>F)
0.000E+00
0.000E+00
3.204E-277
0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 | 1
35
5
3
3
1
1
15
3,596
Df
35
5
3 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029
19.739
F value
792.830
1,469.080
428.016
3,841.835
5,711.520 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116
1.013E-68
1.939E-26
7.144E-52
Pr(>F)
0.000E+00
0.000E+00
0.000E+00
0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet crue.yft | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 | 1 35 5 3 3 1 1 5 3,596 Df 35 5 3 3 1 1 1 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029
19.739
F value
792.830
1,469.080
428.016
3,841.835
5,711.520
4,283.189 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116
1.013E-68
1.939E-26
7.144E-52
Pr(>F)
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00 | | (Intercept) year month area lat5 cpue.bet
cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 | 1
35
5
3
3
1
1
15
3,596
Df 35
5
3
3
1
1
1 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029
19.739
F value
792.830
1,469.080
428.016
3,841.835
5,711.520
4,283.189
845.860 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116
1.013E-68
1.939E-26
7.144E-52
Pr(>F)
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area yearlat5 | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 | 1 35 5 3 3 1 1 15 3,596 Df 35 5 3 3 1 1 1 15 105 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029
19.739
F value
792.830
1,469.080
428.016
3,841.835
5,711.520
4,283.189
845.860
129.799 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area year year month | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 | 1 35 5 3 3 1 1 15 3,596 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029
19.739
F value
792.830
1,469.080
428.016
3,841.835
5,711.520
4,283.189
845.860 | 2.191E-23
1.423E-85
1.600E-70
3.696E-60
6.166E-116
1.013E-68
1.939E-26
7.144E-52
Pr(>F)
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area yearlat5 | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 | 1 35 5 3 3 1 1 15 3,596 Df 35 5 3 3 1 1 1 15 105 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029
19.739
F value
792.830
1,469.080
428.016
3,841.835
5,711.520
4,283.189
845.860
129.799 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area year area lat5 year:lat5 year:area Residuals | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 148,110 | 1 35 5 3 3 1 1 15 3,596 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029
19.739
F value
792.830
1,469.080
428.016
3,841.835
5,711.520
4,283.189
845.860
129.799 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area year area lat5 cpue.bet cpue.yft month:area year:lat5 year:area Residuals BaseSS | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 148,110 Type_3 | 1
35
5
3
3
1
1
5
3,596
Df
35
5
3
3
1
1
1
15
105
203,058 | 100.678
15.564
70.463
96.647
192.795
320.467
115.029
19.739
F value
792.830
1,469.080
428.016
3,841.835
5,711.520
4,283.189
845.860
129.799
147.878 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.747E-18 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area year lat5 cpue.bet cpue.sft month:area year:lat5 year:area Residuals BaseSS name (Intercept) year | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 148,110 Type_3 Sum Sq 55.49 2,072.87 | 1 35 5 3 3 1 1 15 3,596 Df 35 5 3 3 1 1 15 105 203,058 Df 1 35 | 100.678 15.564 70.463 96.647 192.795 320.467 115.029 19.739 F value 792.830 1,469.080 428.016 3,841.835 5,711.520 4,283.189 845.860 129.799 147.878 F value 76.078 81.197 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area year:lat5 year:area Residuals BaseSS name (Intercept) year month | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 148,110 Type_3 Sum Sq 2,072.87 5,796.77 | 1 35 5 3 3 1 1 15 3,596 Df 35 5 105 105 203,058 Df 1 35 5 5 | 100.678 15.564 70.463 96.647 192.795 320.467 115.029 19.739 F value 792.830 1,469.080 428.016 3,841.835 5,711.520 4,283.189 845.860 129.799 147.878 F value 76.078 81.197 1,589.466 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area year sesiduals BaseSS name year:area Residuals | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 148,110 Type_3 Sum Sq 2,072.87 5,796.77 1,739.00 | 1 35 5 3 3 1 1 15 3,596 Df 35 5 3 1 1 15 105 203,058 Df 1 35 5 3 | 100.678 15.564 70.463 96.647 192.795 320.467 115.029 19.739 F value 792.830 1,469.080 428.016 3,841.835 5,711.520 4,283.189 845.860 129.799 147.878 F value 76.078 81.197 1,589.466 794.719 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area year month area lat5 year:area Residuals BaseSS name (Intercept) year month area lat5 | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 148,110 Type_3 Sum Sq 2,072.87 5,796.77 1,739.00 9,333.20 | 1 35 5 3 3 1 1 15 3,596 Df 35 5 3 3 1 1 15 105 203,058 Df 1 35 5 3 3 3 1 3 3 1 3 3 3 3 3 3 3 3 3 3 | 100.678 15.564 70.463 96.647 192.795 320.467 115.029 19.739 F value 792.830 1,469.080 428.016 3,841.835 5,711.520 4,283.189 845.860 129.799 147.878 F value 76.078 81.197 1,589.466 794.719 4,265.250 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area year:lat5 year:area Residuals BaseSS name (Intercept) year month area lat5 cpue.bet | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 148,110 Type_3 Sum Sq 2,072.87 5,796.77 1,739.00 9,333.20 4,165.97 | 1 35 5 3 3 1 1 15 3,596 Df 35 5 3 3 1 1 15 105 203,058 Df 1 35 5 33 3 1 1 15 105 105 203,058 | 100.678 15.564 70.463 96.647 192.795 320.467 115.029 19.739 F value 792.830 1,469.080 428.016 3,841.835 5,711.520 4,283.189 845.860 129.799 147.878 F value 76.078 81.197 1,589.466 794.719 4,265.250 5,711.520 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name (Intercept) year month area lat5 cpue.bet cpue.yft cpue.yft month contact contac | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2.145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 148,110 Type_3 Sum Sq 55.49 2,072.87 5,796.77 1,739.00 9,333.20 4,165.97 3,124.15 | 1 35 5 3 3 1 1 15 3,596 Df 35 5 3 3 1 1 15 105 203,058 Df 1 35 5 3 3 1 1 1 15 105 105 203,058 | 100.678 15.564 70.463 96.647 192.795 320.467 115.029 19.739 F value 792.830 1,469.080 428.016 3,841.835 5,711.520 4,283.189 845.860 129.799 147.878 F value 76.078 81.197 1,589.466 794.719 4,265.250 5,711.520 4,283.189 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area year:lat5 year:area Residuals BaseSS name (Intercept) year month area lat5 cpue.bet | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 148,110 Type_3 Sum Sq 2,072.87 5,796.77 1,739.00 9,333.20 4,165.97 | 1 35 5 3 3 1 1 15 3,596 Df 35 5 3 3 1 1 15 105 203,058 Df 1 35 5 33 3 1 1 15 105 105 203,058 | 100.678 15.564 70.463 96.647 192.795 320.467 115.029 19.739 F value 792.830 1,469.080 428.016 3,841.835 5,711.520 4,283.189 845.860 129.799 147.878 F value
76.078 81.197 1,589.466 794.719 4,265.250 5,711.520 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area year:lat5 year:area Residuals BaseSS name (Intercept) year month area lat5 cpue.bet cpue.yft month:area year:lat6 year:area Residuals BaseSS name (Intercept) year month area lat5 cpue.bet cpue.yft month:area | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 148,110 Type_3 Sum Sq 55.49 2,072.87 1,739.00 9,333.20 4,165.97 3,124.15 9,254.54 | 1 35 5 3 3 1 1 15 3,596 Df 35 5 3 3 1 1 15 105 203,058 Df 1 35 5 3 3 1 1 1 15 105 105 203,058 | 100.678 15.564 70.463 96.647 192.795 320.467 115.029 19.739 F value 792.830 1,469.080 428.016 3,841.835 5,711.520 4,283.189 845.860 129.799 147.878 F value 76.078 81.197 1,589.466 794.719 4,265.250 5,711.520 4,283.189 845.860 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 | | (Intercept) year month area lat5 cpue.bet cpue.yft month:area Residuals BaseSS name year month area lat5 cpue.bet cpue.yft month:area year:lat5 year:area Residuals BaseSS name (Intercept) year month area lat5 cpue.bet cpue.yft month:area year:lat5 | 60.06 324.98 210.18 172.97 345.04 191.18 68.62 176.63 2,145.23 Type_2 Sum Sq 20,240.12 5,357.72 936.58 8,406.69 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 5,796.77 1,739.00 9,333.20 4,165.97 3,124.15 9,254.54 9,940.89 11,325.54 | 1 35 5 3 3 1 1 15 3,596 Df 35 5 3 3 1 1 15 105 203,058 Df 1 35 5 3 3 1 1 15 105 105 105 105 105 105 105 105 | 100.678 15.564 70.463 96.647 192.795 320.467 115.029 19.739 F value 792.830 1,469.080 428.016 3,841.835 5,711.520 4,283.189 147.878 F value 76.078 81.197 1,589.466 794.719 4,265.250 5,711.520 4,283.189 845.860 129.799 | 2.191E-23 1.423E-85 1.600E-70 3.696E-60 6.166E-116 1.013E-68 1.939E-26 7.144E-52 Pr(>F) 0.000E+00 | ## CCSBT-ESC/2208/BGD 02 Table 4. AIC and BIC of Base case model, reduced base case and random effect model. | Method | Model | AIC | BIC | |--------|------------------|-------|-------| | GLM | Base | 8,109 | 9,815 | | GLM | Reduced Base | 8,561 | 8,965 | | GLMM | Random=Year_Area | 8,492 | 9,553 | Table 5. Area weighted standardized CPUE | | Base | Base | Reduce
d | Reduce
d | Base
SxS | Base
SxS | GLMM | GLMM | GAM | GAM | |------|--------|--------|-------------|-------------|-------------|-------------|--------|--------|--------|--------| | Year | w08 | w05 | Base
w08 | Base
w05 | w08 | w05 | w08 | w05 | w09 | w06 | | 1969 | 2.2841 | 2.4934 | 2.2841 | 2.4934 | 2.2841 | 2.4934 | 2.2841 | 2.4934 | 2.2841 | 2.4934 | | 1970 | 2.2268 | 2.4169 | 2.2268 | 2.4169 | 2.2268 | 2.4169 | 2.2268 | 2.4169 | 2.2268 | 2.4169 | | 1971 | 2.0654 | 2.2054 | 2.0654 | 2.2054 | 2.0654 | 2.2054 | 2.0654 | 2.2054 | 2.0654 | 2.2054 | | 1972 | 2.1669 | 2.2273 | 2.1669 | 2.2273 | 2.1669 | 2.2273 | 2.1669 | 2.2273 | 2.1669 | 2.2273 | | 1973 | 1.8263 | 1.9271 | 1.8263 | 1.9271 | 1.8263 | 1.9271 | 1.8263 | 1.9271 | 1.8263 | 1.9271 | | 1974 | 1.8989 | 1.9710 | 1.8989 | 1.9710 | 1.8989 | 1.9710 | 1.8989 | 1.9710 | 1.8989 | 1.9710 | | 1975 | 1.4556 | 1.4974 | 1.4556 | 1.4974 | 1.4556 | 1.4974 | 1.4556 | 1.4974 | 1.4556 | 1.4974 | | 1976 | 1.8715 | 1.9279 | 1.8715 | 1.9279 | 1.8715 | 1.9279 | 1.8715 | 1.9279 | 1.8715 | 1.9279 | | 1977 | 1.6556 | 1.6850 | 1.6556 | 1.6850 | 1.6556 | 1.6850 | 1.6556 | 1.6850 | 1.6556 | 1.6850 | | 1978 | 1.4300 | 1.3820 | 1.4300 | 1.3820 | 1.4300 | 1.3820 | 1.4300 | 1.3820 | 1.4300 | 1.3820 | | 1979 | 1.1472 | 1.2558 | 1.1472 | 1.2558 | 1.1472 | 1.2558 | 1.1472 | 1.2558 | 1.1472 | 1.2558 | | 1980 | 1.3862 | 1.3852 | 1.3862 | 1.3852 | 1.3862 | 1.3852 | 1.3862 | 1.3852 | 1.3862 | 1.3852 | | 1981 | 1.3103 | 1.2917 | 1.3103 | 1.2917 | 1.3103 | 1.2917 | 1.3103 | 1.2917 | 1.3103 | 1.2917 | | 1982 | 1.0285 | 1.0220 | 1.0285 | 1.0220 | 1.0285 | 1.0220 | 1.0285 | 1.0220 | 1.0285 | 1.0220 | | 1983 | 1.0103 | 1.0228 | 1.0103 | 1.0228 | 1.0103 | 1.0228 | 1.0103 | 1.0228 | 1.0103 | 1.0228 | | 1984 | 1.0261 | 1.0603 | 1.0261 | 1.0603 | 1.0261 | 1.0603 | 1.0261 | 1.0603 | 1.0261 | 1.0603 | | 1985 | 0.8578 | 0.8861 | 0.8578 | 0.8861 | 0.8578 | 0.8861 | 0.8578 | 0.8861 | 0.8578 | 0.8861 | | 1986 | 0.6563 | 0.6848 | 0.6174 | 0.6482 | 0.6568 | 0.6868 | 0.6153 | 0.6308 | 0.6563 | 0.6848 | | 1987 | 0.6569 | 0.6799 | 0.6604 | 0.6785 | 0.6590 | 0.6818 | 0.6440 | 0.6547 | 0.6569 | 0.6799 | | 1988 | 0.5506 | 0.5666 | 0.5075 | 0.5114 | 0.5858 | 0.5971 | 0.5050 | 0.5055 | 0.5506 | 0.5666 | | 1989 | 0.5095 | 0.5362 | 0.5010 | 0.5221 | 0.5361 | 0.5561 | 0.4718 | 0.4869 | 0.5095 | 0.5362 | | 1990 | 0.5163 | 0.5057 | 0.5539 | 0.5355 | 0.4755 | 0.4717 | 0.5096 | 0.4936 | 0.5163 | 0.5057 | | 1991 | 0.4529 | 0.4600 | 0.5009 | 0.4971 | 0.4280 | 0.4403 | 0.4653 | 0.4593 | 0.4529 | 0.4600 | | 1992 | 0.5579 | 0.5521 | 0.6062 | 0.5881 | 0.5105 | 0.5092 | 0.5447 | 0.5327 | 0.5579 | 0.5521 | | 1993 | 0.7127 | 0.6562 | 0.7273 | 0.6727 | 0.7024 | 0.6650 | 0.7132 | 0.6643 | 0.7127 | 0.6562 | | 1994 | 0.6964 | 0.5945 | 0.6494 | 0.5692 | 0.6897 | 0.5901 | 0.6751 | 0.5768 | 0.6964 | 0.5945 | | 1995 | 0.7401 | 0.6690 | 0.7865 | 0.7085 | 0.7835 | 0.6886 | 0.7774 | 0.6992 | 0.7401 | 0.6690 | | 1996 | 0.5639 | 0.5097 | 0.5613 | 0.5158 | 0.6191 | 0.5624 | 0.6347 | 0.5827 | 0.5639 | 0.5097 | | 1997 | 0.5327 | 0.4866 | 0.5634 | 0.5152 | 0.4996 | 0.4616 | 0.5869 | 0.5331 | 0.5327 | 0.4866 | | 1998 | 0.5830 | 0.5680 | 0.6000 | 0.5782 | 0.5380 | 0.5197 | 0.6420 | 0.6166 | 0.5830 | 0.5680 | | 1999 | 0.5785 | 0.5480 | 0.5909 | 0.5584 | 0.5430 | 0.5186 | 0.6111 | 0.5800 | 0.5785 | 0.5480 | | 2000 | 0.5227 | 0.4639 | 0.5160 | 0.4582 | 0.5120 | 0.4634 | 0.5448 | 0.4865 | 0.5227 | 0.4639 | | 2001 | 0.6078 | 0.5551 | 0.6209 | 0.5616 | 0.5938 | 0.5463 | 0.6538 | 0.5976 | 0.6078 | 0.5551 | | 2002 | 0.8625 | 0.7022 | 0.7502 | 0.6166 | 0.8323 | 0.6817 | 0.8034 | 0.6597 | 0.8625 | 0.7022 | | 2003 | 0.6131 | 0.5051 | 0.6242 | 0.5109 | 0.5919 | 0.5013 | 0.6683 | 0.5499 | 0.6131 | 0.5051 | | 2004 | 0.6635 | 0.6024 | 0.6794 | 0.6060 | 0.6712 | 0.5946 | 0.6255 | 0.5904 | 0.6635 | 0.6024 | | 2005 | 0.5545 | 0.5074 | 0.5466 | 0.4954 | 0.7032 | 0.6165 | 0.5036 | 0.4779 | 0.5545 | 0.5074 | # CCSBT-ESC/2208/BGD 02 Table 5. (cont.) | | Base | Base | Reduce
d
Base | Reduce
d
Base | Base
SxS | Base
SxS | GLMM | GLMM | GAM | GAM | |------|--------|--------|---------------------|---------------------|-------------|-------------|--------|--------|--------|--------| | Year | w08 | w05 | w08 | w05 | w08 | w05 | w08 | w05 | w09 | w06 | | 2006 | 0.3528 | 0.3118 | 0.3414 | 0.3111 | 0.3719 | 0.3284 | 0.3450 | 0.3202 | 0.3528 | 0.3118 | | 2007 | 0.2824 | 0.2356 | 0.3190 | 0.2574 | 0.3052 | 0.2546 | 0.2951 | 0.2374 | 0.2824 | 0.2356 | | 2008 | 0.5855 | 0.4417 | 0.5288 | 0.4265 | 0.5439 | 0.4071 | 0.5168 | 0.4067 | 0.5855 | 0.4417 | | 2009 | 0.7280 | 0.5462 | 0.6712 | 0.5133 | 0.6497 | 0.4867 | 0.7333 | 0.5487 | 0.7280 | 0.5462 | | 2010 | 0.9596 | 0.6822 | 0.6958 | 0.5169 | 0.9616 | 0.6781 | 0.8369 | 0.6189 | 0.9596 | 0.6822 | | 2011 | 0.8827 | 0.6501 | 0.7423 | 0.5544 | 0.9145 | 0.6786 | 0.9067 | 0.6711 | 0.8827 | 0.6501 | | 2012 | 1.0820 | 0.7851 | 0.7489 | 0.5500 | 1.0156 | 0.7384 | 0.9658 | 0.7042 | 1.0820 | 0.7851 | | 2013 | 1.0114 | 0.7092 | 0.8410 | 0.5934 | 1.0405 | 0.7416 | 1.1631 | 0.8123 | 1.0114 | 0.7092 | | 2014 | 1.1676 | 0.8368 | 0.8874 | 0.6374 | 1.0320 | 0.7372 | 1.3303 | 0.9420 | 1.1676 | 0.8368 | | 2015 | 1.2992 | 0.9415 | 1.0565 | 0.7574 | 1.3744 | 0.9925 | 1.6601 | 1.1824 | 1.2992 | 0.9415 | | 2016 | 1.1776 | 0.8490 | 1.0179 | 0.7301 | 1.0637 | 0.7687 | 1.5566 | 1.1168 | 1.1776 | 0.8490 | | 2017 | 1.2351 | 0.8820 | 0.8615 | 0.6038 | 1.4643 | 1.0177 | 1.3147 | 0.9444 | 1.2351 | 0.8820 | | 2018 | 1.9521 | 1.3214 | 1.2134 | 0.8579 | 2.3378 | 1.5406 | 1.4823 | 1.0828 | 1.9521 | 1.3214 | | 2019 | 1.5309 | 1.0714 | 1.1863 | 0.8369 | 2.0916 | 1.4264 | 1.3753 | 0.9994 | 1.5309 | 1.0714 | | 2020 | 1.8838 | 1.3169 | 1.1053 | 0.8284 | 2.0414 | 1.4217 | 1.3630 | 1.0509 | 1.8838 | 1.3169 | | 2021 | 1.2890 | 0.9323 | 1.1404 | 0.8141 | 1.5733 | 1.1318 | 1.2727 | 0.9217 | 1.2890 | 0.9323 | Fig. 1a. Number of cells in the core vessel for all operations. (Top panel) Bar represents the number of 5x5 degrees square and month (cell) where fishing operated by CCSBT statistical area and refer to left side y-axis. Line with circle plot represents the mean annual number of operations per cell and refer to right side y-axis. (Middle panel) Bar represents the number of 1x1 degree square and month (cell) where fishing operated by CCSBT statistical area and refer to left side y-axis. Line with circle plot represents the mean annual number of operations per cell and refer to right side y-axis. (Bottom panel) Composition of frequency for the number of 1x1 degree square and month cells operated in a 5x5 degree squares and month cell. Refer to left side y-axis. The grey band is one of 25 cells and that at top is 25 of 25 cells, and every five is colored. Line with triangle represents the mean number of 1x1 month cells operated in a 5x5 month cell and refer to right side y-axis. Fig. 1b. Number of cells in the core vessel for <u>SBT 4+ catch positive</u>. See explanation in Fig. 1a. Fig. 2. Standardized CPUE (Is-mean with 95% confidence interval) of the core vessel data (upper panel) and its QQ plot of residual (lower panel) for Base case. Fig. 3. Standardized CPUE (Is-mean with 95% confidence interval) of the core vessel data (upper panel) and its QQ plot of residual (lower panel) for monitoring series. Left panels for reduced base case and right panels for shot-by-shot data with base case GLM model. # W0.5 Fig. 4. Area weighed standardized CPUE from three GLMs. Nominal CPUE of the core vessels is also shown. Fig. 5. Area weighed standardized CPUE series
from GLM (Base), GLMM and GMA. In GAM11, the index is for W0.9 in the upper panel and W0.6 in the lower panel.